
Demystifying the Fight Against Complexity:
A Comprehensive Study of Live Debugging Activities

in Production Cloud Systems
P. C. Sruthi

Purdue University

West Lafayette, Indiana, USA

psruthi@purdue.edu

Zinan Guo
∗

Purdue University

West Lafayette, Indiana, USA

guo663@purdue.edu

Deming Chu
†

Purdue University

West Lafayette, Indiana, USA

chu292@purdue.edu

Zhengyan Chen
‡

University of Georgia

Athens, Georgia, USA

zychen@uga.edu

Yongle Zhang

Purdue University

West Lafayette, Indiana, USA

yonglezh@purdue.edu

ABSTRACT
Debugging in production cloud systems (or live debugging)

is a critical yet challenging task for on-call developers due

to the financial impact of cloud service downtime and the

inherent complexity of cloud systems. Unfortunately, how de-

bugging is performed, and the unique challenges faced in the

production cloud environment have not been investigated

in detail.

In this paper, we perform the first fine-grained, obser-

vational study of 93 real-world debugging experiences of

production cloud failures in 15 widely adopted open-source
distributed systems including distributed storage systems,

databases, computing frameworks, message passing systems,

and container orchestration systems. We examine each de-

bugging experience with a fine-grained lens and categorize

over 1700 debugging steps across all incidents. Our study pro-

vides a detailed picture of how developers perform various

diagnosis activities including failure reproduction, anomaly

analysis, program analysis, hypothesis formulation, informa-

tion collection and online experiments.

Highlights of our study include: (1) Analyses of the tax-

onomies and distributions of both live debugging activities

∗
Currently at Ernst & Young

†
Work done while enrolled at Tongji University, interning at Purdue

‡
Work done while enrolled at Peking University, interning at Purdue

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SoCC ’24, November 20–22, 2024, Redmond, WA, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1286-9/24/11.

https://doi.org/10.1145/3698038.3698568

and the underlying reasons for hypothesis forking, which

confirm the presence of expert debugging strategies in pro-

duction cloud systems, and offer insights to guide the training

of novice developers and the development of tools that em-

ulate expert behavior. (2) The identification of the primary

challenge in anomaly detection (or, observability) for end-to-

end debugging: the collection of system-specific data (17.1%

of data collected). In comparison, nearly all (96%) invariants

utilized to detect anomalies are already present in existing

monitoring tools. (3) The identification of the importance

of online interventions (i.e., in-production experiments that

alter system execution) for live debugging – they are per-

formed as frequently as information collection – with an

investigation of different types of interventions and chal-

lenges. (4) An examination of novel debugging techniques

developers utilized to overcome debugging challenges inher-

ent to or amplified in cloud systems, which offer insights for

the development of enhanced debugging tools.

CCS CONCEPTS
• Software and its engineering → Distributed systems
organizing principles; Software testing and debugging;
• Computer systems organization → Cloud computing.

KEYWORDS
Debugging, Live Debugging, Distributed Systems, Cloud

Computing, Observability, Study

ACM Reference Format:
P. C. Sruthi, Zinan Guo, Deming Chu, Zhengyan Chen, and Yon-

gle Zhang. 2024. Demystifying the Fight Against Complexity: A

Comprehensive Study of Live Debugging Activities in Production

Cloud Systems . In ACM Symposium on Cloud Computing (SoCC
’24), November 20–22, 2024, Redmond, WA, USA. ACM, New York,

NY, USA, 20 pages. https://doi.org/10.1145/3698038.3698568

https://orcid.org/0009-0000-3860-9573
https://orcid.org/0009-0002-0236-3959
https://orcid.org/0009-0001-8696-9036
https://orcid.org/0009-0007-6012-8312
https://orcid.org/0000-0001-5350-5182
https://doi.org/10.1145/3698038.3698568
https://doi.org/10.1145/3698038.3698568

SoCC ’24, November 20–22, 2024, Redmond, WA, USA P. C. Sruthi, Zinan Guo, Deming Chu, Zhengyan Chen, and Yongle Zhang

1 INTRODUCTION
Failure diagnosis and resolution in production cloud sys-

tems (or live debugging) is notoriously difficult and time-

consuming due to their inherent complexity: developers typ-

ically need to reason about tens of thousands of concurrent

processes executed on heterogeneous hardware devices [12].

This time-consuming procedure could delay failure resolu-

tion, extend service disruption, and result in customer frus-

tration; we collected a random sample of public incidents

from top cloud vendors and found that 62.5% of the duration

of service disruption was spent on debugging (§ 2).

Many researchers [43, 49, 57, 72, 73, 90, 99] have inves-

tigated different aspects of debugging in single-node ap-

plications. Yet, live debugging in production cloud systems

remains under-examined. To the best of our knowledge, only

three recent works [48, 55, 114] have studied a few aspects

of debugging in cloud systems, but they did not study how

live debugging is performed: researchers from Microsoft

studied common root causes of production incidents and

corresponding detection and mitigation strategies [55] in

Microsoft Azure, as well as the root cause labeling given a

postmortem report [48], but they did not analyze how the

root causes are diagnosed. Zhou et al. [114] focuses on eval-

uating the effectiveness of information (i.e., logs and traces)

utilized in diagnosing microservice failures. None of them

provide a detailed understanding of how developers perform

various debugging activities, such as failure reproduction,

anomaly detection, program analysis, hypothesis formula-

tion, information collection and online experiments.

In this work, we perform the first study of fine-grained
debugging activities in end-to-end, real-world debugging ex-

periences in production cloud systems. In particular, we collect
and analyze 93 detailed documents (e.g., blog posts) of devel-

opers’ failure diagnosis experiences in production environ-

ments of 15 widely deployed open-source distributed systems

(e.g., Cassandra [16], Spark [106], and Kubernetes [23]). In

contrast to bug reports and postmortem reports which usu-

ally document the root cause and fix of a failure, we study the

documents that rewind every diagnosis activity performed

by the developer for a production cloud incident and how

each activity changes their hypotheses. We divide each docu-

ment into fine-grained steps according to different activities

performed by the developer. This results in 1740 steps across

all cases, with an average of approximately 19 steps per case.

To ensure the quality of our analysis, we conservatively ex-

clude documents lacking detailed debugging steps and clear

descriptions of hypotheses.

Our goal is to provide a comprehensive, fine-grained un-

derstanding of various debugging activities and respective

challenges in production cloud environments, providing

guidance for potential solutions. We focus on the follow-

ing research questions:

RQ 1. Debugging Activities. What debugging activities

do developers perform in production cloud systems? How

are they performed – what strategies and heuristics do de-

velopers adopt in each activity?

RQ 2. Challenges. What are the challenges faced in each

diagnosis activity? What are the challenges introduced by

or magnified in production cloud systems? What debugging

strategies do developers adopt to overcome these challenges?

RQ 3. Reasons for Forking Hypotheses. Given that the

core of debugging is to formulate and validate hypotheses,

what causes developers to formulate multiple hypotheses?

This paper makes the following contributions:

• We present the first study of fine-grained debugging ac-

tivities in end-to-end, real-world debugging experiences

in production cloud systems from open-source distributed

systems. Our analysis results in a set of structured docu-

mentations and causal graphs (§ 2) of debugging experi-

ences. Our study reveals over a dozen informative findings

with concrete implications for new research directions to

assist debugging production cloud failures. All of our data

is available online
1
.

• Our study reveals taxonomies of both live debugging ac-

tivities and strategies (Table 4), as well as underlying rea-

sons for hypothesis forking (Table 7) in the production

cloud environment. Our analysis explains expert debug-

ging strategies and offers insights on how novice develop-

ers and debugging tools may emulate such strategies. For

instance, we find that expert developers tend to (in 80.4%

of cases) formulate multiple hypotheses by enumerating

immediate causes in a chosen model or considering the

correctness of the model itself. Our analysis shows how

hypothesis forking is performed (§ 4.2), as well as how

developers limit the scope of their reasoning (§ 4.3) so

that the number of immediate causes is tractable using a

variety of strategies (§ 4.4, § 6).

• To the best of our knowledge, our study is the first to quan-

tify the requirements of effective anomaly detection for

end-to-end debugging within production cloud environ-

ments. Despite existing monitoring tools incorporating

most (96%) necessary invariants, the collection of system-

specific information (17.1%) remains a primary obstacle.

In addition, we investigate potential strategies to automat-

ically collect system-specific information and provide a

taxonomy of unconventional invariants.

• Our study reveals that online interventions – in-production

experiments that alter system execution – are critical for

1
https://github.com/zlab-purdue/socc-24-debugging-study

https://github.com/zlab-purdue/socc-24-debugging-study

Demystifying the Fight Against Complexity SoCC ’24, November 20–22, 2024, Redmond, WA, USA

debugging purposes, demonstrating their prevalence (11.3%)

to be on par with information collection (12%). We fur-

ther discuss the potential to inject knobs for intervention

automatically, as well as functionality- and performance-

preserving guarantees to mitigate risks associated with

such interventions.

• Our study reveals novel debugging techniques developers

utilized to overcome debugging challenges inherent to

or amplified in cloud systems. These techniques include

leveraging concurrency indicators (unique anomalies that

indicate concurrency bugs), educated guesses of execution

frequency, and exploiting symmetry in node roles. These

findings offer valuable insights for the development of

enhanced debugging tools tailored to the specific demands

of cloud systems.

We describe our study methodology in § 2, before present-

ing an overview of studied debugging activities and strategies
in § 3. We investigate how developers formulate hypotheses

by explanation and exploration and corresponding challenges
in § 4. § 5 details our findings about how developers perform

experiments. We discuss challenges inherent to or amplified

by cloud systems, as well as novel debugging strategies to
overcome them in § 6. We explain related work in § 7 and

conclude in § 8.

2 METHODOLOGY
To understand the cost of debugging in production, we

first performed a pilot study by randomly sampling 20 public

postmortem reports from Google Cloud Platform (GCP) [21],

avg. min avg. %

Detection 29.8 10.8%

Debugging 169 62.5%

Recovery 37.2 29.2%

Total 232.8

Table 1: Incident timeline

as they typically record

timestamps indicating

when the failure is de-

tected, debugged, and

recovered from. Our

study shows that on

average, 10.8% of in-

cidents’ duration was

spent on detection, 62.5%

on debugging, and 29.2% on deployment and recovery, which

highlights the need to reduce debugging time for produc-

tion failures. Although these reports offer valuable insights

into the high-level pattern of failure resolution processes in

production cloud environments, they lack detailed descrip-

tions of debugging steps that are essential for our study,

such as how developers formulate hypotheses and conduct

experiments.

2.1 Case Collection
To ensure that we collected representative and high-quality

debugging experiences, we adopted the following case col-

lection methodology.

System # % System # %

Cassandra 2 2.1 Kubernetes 9 9.7

FastDFS 1 1.1 MongoDB 6 6.5

Flink 2 2.1 Redis 4 4.3

HBase 6 6.5 Spark 12 12.9

HDFS 14 15.1 TiDB 2 2.1

Hive 6 6.5 Yarn 3 3.2

Kafka 15 16.1 ZooKeeper 10 10.8

etcd 1 1.1

Total 93 100.0
Table 2: Distribution of cases analyzed

As shown in Table 2, we chose a large variety of widely-

deployed, open-source distributed systems, including dis-

tributed storage systems (HDFS [22], FastDFS [105]), dis-

tributed databases and key-value stores (Cassandra [16],

HBase [18], Hive [19], ZooKeeper [64], etcd [28], Redis [35],

MongoDB [32], TiDB [36]), distributed computing frame-

works (Spark [27]), a distributed resourcemanager (YARN [98]),

distributed message passing services (Flink [17], Kafka [20]),

and a container orchestration framework (Kubernetes [23]).

For each of the above systems, we scraped the Internet

with keywords such as “debugging”, “diagnosis”, “troubleshoot-

ing”, and “postmortem”, combined with (1) the system’s

name, or (2) bug ticket identifiers on their issue trackers.

Our scraping resulted in over 63,000 webpages. To ensure

the quality of the studied documents, we then filtered out

webpages without detailed steps for diagnosing a failure (e.g.,

posts that only describe a failure’s root cause and fix). To en-

sure these debugging experiences happened in production,

we further filtered out the documents which had no key-

words indicating the failure was encountered in production

(e.g., “production”, “customer”). Finally, for each blog post

in the remaining set, we found additional high-quality posts

by navigating through technical blog posts from the same

author (85% of our documents have a distinct author), as

well as recommendations on the sites where the posts were

hosted. This resulted in a total of 93 posts, that we analyzed

in detail.

Case Quality: The conservative nature of our case selec-
tion process resulted in a limited proportion (7.8%) of debug-

ging steps where the rationale for hypothesis development

was not explicitly documented.

2.2 Case Characteristics
Root Cause: As shown in Table 3, our collected cases have

diverse root causes. Temporal Distribution: 81% of these

cases happened within the past five years.

Though not every document mentions the scale of their

cloud and the developer’s profile, many mentioned that the

SoCC ’24, November 20–22, 2024, Redmond, WA, USA P. C. Sruthi, Zinan Guo, Deming Chu, Zhengyan Chen, and Yongle Zhang

 NodeManager Restart

 Full Garbage Collection

Frequency:
 0.5 Year

Size:
2.5 GB

Size:
649 MB

Heap

Stat
Obj

Client
 Obj

. . .

 DistributedFileSystem Obj
 DFSOutputStream.close()

throws IOException

 Client.endFileLease()

NodeManager Events NodeManager States Attributes

①

②

③

④

⑤

⑥
⑦⑧

⑨
⑩

causes contributes to has avoids missing event

leaks

Figure 1: Causal Graph for hdfs-5 [7]

failures happened on large-scale clouds and were diagnosed

by experienced developers.

Root Cause Case (%)
Software Bug 53.4

Misconfiguration 35.0

Incorrect Input 6.8

Hardware Fault 3.9

Changed Dependency 1.0

Table 3: Root cause distribution

Cloud Scale: For ex-
ample, hdfs-8 [6] hap-
pened on a system

with 50 billion trans-

actions per day and

8PB data, and kafka-
6 [15] happened on

a system powering

over 250 applications.

In addition, though root caused in one system, many result-

ing failures were diagnosed across multiple interdependent

systems (e.g., Hive, HDFS, Yarn [5, 10, 31]). Developer
Profile: Many authors of the posts were engineers with

decades of experience from mid- to large-scale cluster com-

panies, including Apache Project Management Committee

members [1, 2, 9, 11, 14, 26]. Additionally, some posts are

detailed accounts of incidents from companies with billion

dollar valuations such as PagerDuty [34], a leader in monitor-

ing and incident management and Gojek [30], a technology

service provider, written by their own engineers. Debug-
ging Duration: Failure cases with debugging duration were

documented as taking hours to months to diagnose.

2.3 Case Analysis Method
To facilitate a fine-grained analysis of debugging activities,

for each post, we organized developers’ actions as a series

of fine-grained steps, falling into the categories of activities

specified in § 3. To study the relationship between debugging

activities and hypotheses, we constructed a causal graph rep-

resenting developers’ hypotheses that resulted from each

step, with each node representing an event or state and edges

representing causal relationships. Nodes can be associated

with attributes representing a quantity that needs to be ex-

plained, such as the size of a memory snapshot.

We provide an overview of our analysis with a simplified

real-world example – hdfs-5 [7], a failure caused by memory

leaks in an HDFS/YARN deployment. Figure 1 shows the

causal graph representing developers’ final hypothesis of the

failure. We separate developers’ diagnosis procedure into

the following steps:

Step 1 (categorized as Exploration/Anomaly Detection): The
developer discovers the symptom of the failure: an occur-

rence of full Garbage Collection (full GC) on a NodeManager

(8) causing a restart of the process (9). This phenomenon

occurs every 6 months (10) and makes offline reproduction

infeasible due to the long execution.

Step 2 (categorized as Information Collection): Fortunately,
the failure happens on other nodes in the cluster. The devel-

oper captures the memory snapshot (7 , 6) of a machine

that experiences full GC.

Step 3 (categorized as Explanation of Quantity Contribu-
tions): They analyze the snapshot to find the objects that

contribute to the high memory before full GC, and find a

large number of DistributedFileSystem objects (3 , 5).

Step 4 (categorized as Exploration (through Correlation) and
Explanation (of State Transitions)): They hypothesize that

there is a memory leak of DistributedFileSystem objects or

their referenced objects such as Client objects (4). They

inspect the source code locations cleaning up these objects

with a heuristic: since it takes six months to trigger full

GC, the leak should be due to execution paths that occur

infrequently, such as exception code paths. They find that

a close method fails to release references of Client objects

correctly when exceptions occur (1 , 2).

Step 5 (categorized as Consultation through Online Search):
Finally, they search the system’s JIRA issue tracker for rele-

vant issues, and find a confirmation of their hypothesis.

The causal graph captures the entire hypothesis devel-

opment process and is particularly useful for studying the

relationship between various debugging activities and hy-

potheses. For example, we study what causes developers

to fork hypotheses (§ 4.2) and the distribution of the chal-

lenge of collecting system-specific data in the development

of hypotheses (§ 5.1.1) through queries on the causal graphs.

2.4 Threats to Validity
Our collected set of developers’ documentation may not con-

tain complete and unbiased descriptions of their diagnosis

processes. For example, the developer omitted a reasoning

mistake in their diagnosis for hdfs-6 [1], which they acknowl-
edged. Additionally, being individual accounts, debugging

experience posts’ language convey differing levels of detail.

We attempt to account for the bias and incompleteness by fil-

tering out those posts that do not provide detailed debugging

procedures, where the reasoning is not thorough. Developers

Demystifying the Fight Against Complexity SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Activity Mechanism

Explanation

(640)

Model Analysis

(640)

State Transition

Quantity Contribution

Exploration

(452)

Correlation

(303)

Locality

Execution Comparison

Anomaly

Detection

(149)

Event Anomaly

State Anomaly

Source Code Anomaly

Experimentation

(438)

Information

Collection (209)

Instrumentation

Probing

Online Intervention (196)

Offline Reproduction (33)

Miscellaneous

(459)

Consultation

(103)

Internet Search

Consulting Experts

Past Experience (9) / Unspecified (136)

Validation (132) / Invalidation (159)

Table 4: Overview of diagnosis activities (with # of steps)2

are more likely to document and publish challenging debug-

ging experiences and ignore trivial ones. Fortunately, this

aligns with the goal of our study – to observe and analyze

challenges in debugging. Our collected debugging experi-

ences are public posts of diagnosing failures in open-source

distributed systems. Internal documentation of debugging

experiences about proprietary systems could reveal differ-

ent characteristics. Unfortunately, publicly available post-

mortems from companies do not usually contain enough

detail for analysis. In addition, our sampling and filtering

are limited by our heuristics. We account for observer error

during analysis by having multiple inspectors investigate

each case, and any disagreement is discussed to reach a con-

sensus.

3 DEBUGGING ACTIVITY OVERVIEW
Our analysis reveals a large variety of debugging activities

and strategies performed in production clouds. In this section,

we give an overview of the categorization (Table 4).

The core task of debugging is to find the hypothesis that
adequately illustrates the sequence of events that leads to

the failure symptom. This allows the developer to modify

the system execution in such a way that the effects of the

2
Developers occasionally mention multiple activities in the same sentence.

In these cases, we did not separate the sentence into distinct steps for each

activity, but labeled the step with multiple activities. This leads to steps

belonging to multiple categories.

failure can be mitigated, and completely prevented in future

executions. As shown in Table 4, developers develop their

hypotheses mainly through explanation and exploration, and
verify them through experimentation.

Explanation: Explanation (or model analysis) refers to
when the developer analyzes source code or state machine

style mental models to identify causes of events and states

or causal links between them. Causal relationships adopted

by developers include state transition causality [79], and

quantity contribution.

Exploration: Developers often search relevant sources

of information for clues that could indicate possible causes

for the failure, without having a concrete causal relationship

in mind (the possible causes are often examined later with

explanation). Such exploration is typically performed with a

combination of correlation to identify potential causes follow-
ing locality or comparing multiple executions, and anomaly
detection over events, program states, and source code.

Experimentation: To facilitate both exploration and

explanation, developers perform a variety of experiments,

which fall under three categories: information collection, whereby
the developer probes system state and functionality or traces

execution by instrumenting the system; online interventions
thatmodify system execution in the production environment;

and offline reproduction of failures.

Miscellaneous: Developers also perform consultation –

online search through search engines or on issue trackers,

and consulting experts. If the developer comes up with a

hypothesis without explaining how or states that they had

observed a similar symptom previously, we label the step

with unspecified and past experience respectively. We have

omitted a consultation section in this paper, as our analysis

did not yield significantly new findings compared to exist-

ing research. Lastly, developers validate and invalidate their
hypotheses through repeatedly performing all the aforemen-

tioned activities. These steps allow us to perform the analysis

on reasons for hypothesis forking (§ 4.2).

4 HYPOTHESIS FORMULATION
“When you have eliminated all which is impossi-
ble, whatever remains, however improbable, must
be the truth.”

— Arthur Conan Doyle, The Adventure of the
Blanched Soldier

This Sherlock Holmes quote captures the essence of hy-

pothesis development strategies observed in this study –

expert developers consider possible causes exhaustively, and

validate them rigorously.

In this section, we first investigate the mechanisms devel-

opers employ for explanation and exploration. We then ana-

lyze their reasoning strategies which determine the breadth

SoCC ’24, November 20–22, 2024, Redmond, WA, USA P. C. Sruthi, Zinan Guo, Deming Chu, Zhengyan Chen, and Yongle Zhang

and depth of explanations and explorations, revealing two

key strategies: (1) a broad consideration of potential causes,

and (2) a tendency to focus explanation on a limited scope

informed by experimental evidence.We identify general chal-

lenges in explanation and exploration, including the broad

range of possible causes, as well as unique invariants and

system-specific data required for effective anomaly detection.

Our data also reveals challenges specific to cloud systems,

which we discuss in detail in subsequent sections.

4.1 Mechanisms of Hypothesis Formulation
In this section, we present the mechanisms of hypothesis

formulation and their distribution. While largely intuitive,

these mechanisms are essential for obtaining a holistic view

of the entire debugging process.

Causal Relationship (%)
State Transition 70.8

Quantity Contribution 29.2

Table 5: Explanation Steps

4.1.1 Explanation. A ma-

jor portion (36.8%) of a de-

veloper’s debugging pro-

cess is in the explana-
tion of events and states.

The mechanism of expla-

nation is characterized by the type of causal relationship uti-

lized in the explanation. In particular, we observe two types

of causal relationships, namely state transitions and quantity
contributions, in the proportions shown in Table 5. State tran-

sitions (or events) denote transitions between states in a state

machine model of the system. They include both source code

level transitions such as control flow and data flow, as well

as state transitions at a higher level of abstraction. Quantity

contribution steps involve enumerating what contributes to

a quantity metric such as memory size, execution time, or

other program quantities.

Correlation Mechanism (%)

Locality

Spatial Locality 60.7

Temporal Locality 27.1

Execution Comparison

Common Denominator 9.2

Delta Identification 9.6

Table 6: Exploration step distribution. Some steps may fall
under multiple categories.

4.1.2 Exploration. Anothermajor (26% of all steps) approach

to identify potential causes for events and states is explo-
ration: exploring relevant sources of information (oftenwithin

logs and metrics of dependent components) for anomalies

that could be correlated with and possibly causing the failure.

We examine the mechanism of correlation here, and defer

a detailed discussion of anomaly detection to § 4.4 as the

primary challenge of anomaly detection lies in the policy of

selecting relevant invariants and data.

As shown in Table 6, to correlate anomalies with the fail-

ure, developers often search for anomalies in the systemwith

the intuitive assumption that anomalous behavior located

nearby (following Locality) may be the cause. Spatial local-
ity refers to when developers examine events with a small

spatial distance measured by the number of intermediate

dependent components (e.g., nodes, systems), to the effect.

We distinguish this from pure explanation, since develop-

ers do not reason about a specific state transition between

the components but rather leverage their dependencies for

correlation. Temporal locality refers to searching for abnor-

malities in recent logs or metrics close to when the failure

happened (i.e., within a small temporal distance). Developers

also compare failing and successful executions to find anom-

alies relevant to a failure (Execution Comparison). We

label a step with common denominator if it focuses on iden-

tifying a shared characteristic of multiple execution paths,

pieces of data, or nodes, and we label a step with delta iden-
tification if it focuses on comparing successful and failing

executions to identify any differences between them.

4.2 Hypothesis Forking
In this section, we analyze one aspect of developers’ debug-

ging strategy – how broadly they reason in explanation and

exploration, by answering the question: what factors con-

tribute to the number of hypotheses that developers form? In

particular, we examine the steps where developers form mul-

tiple hypotheses – a process we refer to as hypothesis forking
because it forks multiple branches in our causal graphs (§ 2)

– and analyze the underlying reasons.

Table 7 shows all the reasons we observed for hypothe-

sis forking with their definitions. These reasons reflect the

classes of hypotheses that developers consider to explain a

target when debugging – the developers then exhaustively

enumerate possible causes in the class until the correct one

is identified.

Finding 1. In 80.4% of cases, developers formulated
multiple hypotheses by enumerating the immediate
causes of a target in a model or suspecting the correct-
ness of the model itself.

For a given target state or event to be explained, developers

choose a model (an abstract state machine model or source

code model), and enumerate all possible immediate causes

with respect to that model. For example, the Data Flow cate-

gory refers to immediate assignment statements to a state in

the source code, Partial Failure Modes refer to the different

failure condition checks (e.g., connectivity check, disk size

Demystifying the Fight Against Complexity SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Hypothesis Forking Reasons (%)

Blackbox Reasoning Enumerating faults in (1) dependent components, (2) environment, (3) input/load, (4) config, or (5) code. 44.6

Multiple

Execution Paths

Data Flow Enumerating possible dataflows. 3.6

Partial Failure Modes Enumerating partial failure conditions (e.g., partitioned, disk full) for one or multiple nodes. 4.5

Failure Recovery Enumerating (1) recovery executed but failed or (2) recovery did not happen. 5.4

Missing Event Enumerating occurrence locations of a missing event and conditions leading to its omission. 7.1

Opaque Error Enumerating intractable immediate causes for an error (e.g., who sent a SIGKILL). 1.8

Network Messages Enumerating faults in (1) sending, (2) receipt, or (3) delivery of messages. 2.7

Concurrency Enumerating process/thread interleavings. 0.9

Other Enumerating multiple relatively long execution paths leading to a state/event. 17.0

Slow

Performance

Channel Delay Enumerating (1) saturated bandwidth, (2) broken channel, or (3) delay in endpoint. 2.7

Operation Delay Enumerating delay due to (1) slow single operation or (2) too many operations. 0.9

Contributors Enumerating which subset in a sequence of operations contributes most to the delay. 7.1

Timeout Limit Enumerating (1) performance should be optimized or (2) timeout limit should be increased. 1.8

Large

Quantity

Addition/Removal Enumerating (1) frequent addition or (2) infrequent removal causing the large quantity. 5.4

Quantity Limit Enumerating (1) some quantity should be reduced or (2) the quantity limit should be increased. 5.4

Contributors Enumerating which subset of quantity is abnormally large. 3.6

Dynamism Reasoning about dynamic network/cluster configuration and component dependency in microservices. 1.8

Irrelevant Anomaly Correlating an irrelevant anomaly (i.e., noise) with the failure. 6.2

Incorrect Model Reasoning with incorrect specification of underlying components. 1.8

(In)Validation Mistake Invalidated a hypothesis incorrectly that was later proven correct (or vice versa). 0.9

Table 7: Reasons for the formation of multiple hypotheses. A single target may have multiple reasons for branching (e.g., if
they considered different models). Reasons inherent to or amplified by cloud systems are bolded.

check) returning the same error (e.g., bad node) in source

code, Concurrency refers to the distinct possible interleav-

ings around the critical section. These immediate causes can

be obtained mechanically (and can be systematically taught

to a novice developer) by choosing the appropriate model

and tracking the state transitions. Though these immediate

causes could in theory be difficult to analyze due to the large

and sometimes unbounded number of enumerations, we find

that developers generally limit the scope of their reasoning

until the number of immediate causes is tractable, at which

point they explore them exhaustively. Strategies developers

use to limit the scope and scale are discussed in § 4.3 and

§ 6. We illustrate a subset of the reasons for forking with

examples here.

hdfs-6 [1] is an example in which the developer enumer-

ates Partial Failure Modes of nodes in a cluster. As shown

in Figure 2, developers are diagnosing why an HDFS NameN-

ode could not find a suitable DataNode to replicate its data

(i.e., chooseTargets() returns an empty list). At lines 7-9,

various failure conditions are checked for each DataNode,

such as unavailability, limited node capacity, and overload.

The developer formulates hypotheses for all of these possible
failure conditions, and validates them by manually checking

these failure conditions in situ.
An extreme example is an Opaque Error, in which an

error appears to be “opaque” to a developer due to an in-

tractable number of immediate static or dynamic causes. In

1 Node[] chooseTargets(int nReplicas) {

2 Node[] targets;

3 while (nReplicas > 0) { // replicas needed

4 Node node = chooseNextRandom ();

5 if (node == NULL) // checked all nodes

6 break;

7 if (node.space < limit

8 || !node.isAvailable ()

9 || node.load > threshold)

10 continue; // exclude a ``bad '' node

11 targets.add(node);

12 nReplicas --;

13 }

14 return targets;

15 }

Figure 2: Simplified code snippet for hdfs-6 [1]

spark-1 [81], the developer was explaining an InterruptedEx-

ception, which is an exception thrown by threads when they

are interrupted by other threads in Java. In this case, the

number of possibilities appeared intractable to the developer

due to the large number of Java threads (jobs) from different

services on the servers running Spark. It took more than a

week for the developer to exhaustively analyze anomalies

and identify the error-inducing thread in YARN.

Developers also reason exhaustively about possible mis-

takes in their reasoning, such as using an Incorrect Model
and (In)Validation Mistakes. For example, in hdfs-4 [14],

SoCC ’24, November 20–22, 2024, Redmond, WA, USA P. C. Sruthi, Zinan Guo, Deming Chu, Zhengyan Chen, and Yongle Zhang

the developer was debugging a NullPointerException of an

object retrieved from a list. They first assumed the list data

structure was thread-safe, but later refuted this model after

exhaustively confirming that all insertions into the list are

non-null.

Lesson 1. The key to successful debugging is the ex-
haustive enumeration of all mutually exclusive imme-
diate causes in a carefully chosen model.

As the developer in kube-6 [82] says, “While debugging

any issue, all components across the stack should be suspects.

Ruling out EKS as a possible culprit led to us wasting a lot of

valuable time.” Any ignorance of a possible cause could lead

to a significant cost of time. Though such a breadth-first-

search style of debugging has been discussed before [99]

in the context of test failure debugging, we show that it is

critical in debugging production cloud failures and provide

a taxonomy in Table 7 as to how Lesson 1 may be realized at

the scale of cloud failures and used to guide the training of

novice developers, as well as the development of debugging

tools.

In addition, the reasons for hypothesis forking reflect the

challenges for debugging. Though many of the listed reasons

have been investigated (e.g., missing events [107, 108]), many

challenges unique to or amplified by cloud environments

(in bold in Table 7) persist. We discuss developers’ novel

debugging strategies to address them in § 6.

4.3 Scale of Explanation
Exhaustively enumerating all possible causes, especially in

explanation using model analysis, is difficult, as evidenced

by extreme examples such as opaque errors. In this section,

we analyze another aspect of developers’ debugging strategy

– what is the scale of explanation performed by developers?

This encompasses the scope of source code examined and

the depth of causal relationships investigated.

We performed two analyses: (1) in code-level explanation

steps, we analyzed how much source code was used for

reasoning in each case; (2) in explanation steps at a higher

level of abstraction, we counted the number of causal links

in each explanation step (e.g., causal links formed by RPCs,

cross-component data flow) by querying our data using an

LLM tool [29], which we then cross-verified manually.

In the first analysis, we found that developers reasoned

about, on average 95 lines of code per case (that they men-

tioned in their experiences). In the second analysis, we found

that developers reasoned about a few transitions (avg. 3.5

per step) in every explanation step, before switching to other

debugging activities (developers often resort to anomaly de-

tection for hints, or perform experiments to validate their

hypotheses).

Lesson 2. Frequent verification of hypotheses is the
key to scalable yet systematic debugging.

The results of our analyses are indicative of the phenom-

enon that developers perform verification of hypotheses

frequently to keep their reasoning within a tractable scope,

though we acknowledge that our analysis methods are bi-

ased by the developers’ reporting. Frequent verification [58]

has been discussed as an expert debugging strategy in the

test debugging context, however, our analysis is the first to

confirm its existence in live debugging of production cloud

failures.

4.4 Anomaly Detection
“The little things are infinitely the most impor-
tant.”

— Arthur Conan Doyle, A Case of Identity

Existing research on anomaly detection in cloud systems

has predominantly focused on failure detection [92]. To the

best of our knowledge, our study provides the first analysis of

anomaly detection for the purpose of end-to-end debugging,

which includes both anomalies utilized for failure detection

and anomalies developers collected adaptively for root cause

localization and repair.

Developers detect anomalies by checking collected data

against mental models of the correct behavior of the system,

according to invariants. In this section, we examine the data
and invariants used in anomaly detection. To understand

the challenges in anomaly detection, we categorize data into

system-agnostic (e.g., metrics such as load, CPU utilization,

or the presence of error logs) and system-specific (e.g., val-
ues concerning system-specific data structures in memory)

data and invariants as conventional and unconventional in-
variants depending on whether popular monitoring systems

such as Prometheus [85] and DataDog [46] implement them

by default (e.g., threshold-based anomaly detection, simple

time series analyses). For example, zoo-12 [37] involved the

occurrence of a high number of Zookeeper znodes [38] –

a traditional invariant (threshold based anomaly detection)

broken on system-specific data. In hive-4 [5], the developer
noticed the anomaly of one process being alive, and another

process being dead (where it would not have been anoma-

lous for either of these to have been true independently)

– an example of an unconventional invariant observed on

system-agnostic data (process liveness).

As shown in Table 8, developers look for anomalies in

a variety of sources of information. While anomalies are

mostly (82.9%) observed in system-agnostic data such as

logs (34.7%) and monitoring metrics (29.7%), about one-sixth

(17.1%) are system-specific internal state and events, which

are harder to collect.

Demystifying the Fight Against Complexity SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Category Data Compared (%)

Events Errors 13.2

Exceptions 10.1

Warnings 3.7

Crashes 0.9

Log Frequency 3.1

Other Logs 4.6

Locking Behavior 0.9

Other System Specific Events 7.6

State Config 2.4

Input/Input-metadata 1.5

Process/Thread State 8.9

System Specific State 9.5

Metrics 29.7

Output/Output-metadata 4.0

Table 8: Categories of data compared for exploration

Invariant Type Data Invariant Rule (%)

Runtime Invariant

State

Existence 2.5

Relation 6.3

Expected Value 36.3

Events

Unexpected Events 34.8

Missing Events 1.8

Static Invariant (in source code) 3.5

Table 9: Invariants distribution (over all exploration steps)

Unconventional Inv. Examples

Static Invariant Missing statement, unintended APIs.

Process State Relation Two processes need to be alive

simultaneously.

Data Consistency Data/metadata consistency.

Numerical Delta Abnormal delta of two variables.

Temporal Distance Abnormally distant/close in time.

Equality Two variables are equal/unequal.

Table 10: Unconventional Invariants

Invariant Data

System-Agnostic System-Specific

Conventional 79.5% 16.5%

Unconventional 3.4% 0.6%

Table 11: Cross section of anomaly data and invariants

Table 9 shows our categorization of invariants: (1) runtime

invariants including existence and expected values of states,

the occurrence of events (a missing event is an anomaly, as is

an unexpected event such as an exception), as well as more

complex relationships between states and events; (2) static

invariants refer to abnormal patterns in the source code (i.e.,

the source code showed incorrect behavior according to the

developer’s own system model). We consider the existence

and expected values of states, the occurrence of specific

events, and time series patterns as conventional invariants,
since they are default metrics and detection strategies in

popular monitoring frameworks. On the other hand, static

invariants, and a subset of runtime invariants, are considered

unconventional (Table 10).
We performed a cross-analysis of anomaly data and the

runtime invariants (without static invariants) as shown in

Table 11.

Finding 2. The majority (79.5%) of anomalies can
be detected with conventional invariants and system-
agnostic data. The remainder (20.5%) require system-
specific data or unconventional invariants.

Implications: Existing anomaly detection techniques should

be able to automate the majority (79.5%) of anomaly detec-

tion performed by the developers. On the other hand, the

remainder (20.5%) requires system-specific data or unconven-

tional invariants, rendering widely adopted anomaly detec-

tion techniques insufficient. Among the unconventional in-

variants, Process State Relation and Data Consistency present

a lower barrier to adoption due to the well-defined scope

of the required data. Conversely, Numerical Delta, Equality,
and Temporal Distance pose a greater challenge due to the

pervasive nature of the data involved. Static Invariants are
also challenging due to the many varied suspicious code pat-

terns. Since the system-specific data utilized in exploration

are collected through Information Collection in experimenta-

tion, we discuss the potential to adaptively collect this data

with low overhead, in § 5.

5 EXPERIMENTATION
Developers perform experiments, namely, information col-

lection, online interventions in the production environment,

and offline reproductions, to verify and develop their hy-

potheses.

5.1 Information Collection
Developers collect additional information when existing run-

time information (e.g., logs, metrics) are insufficient to di-

agnose the failure. An Information Collection (IC) step is

one that involves instrumentation to trace execution of the

program as it re-executes failure paths, or interactive prob-
ing of the system to collect information while the system

is in a buggy state. We present the collection methods and

information collected in Table 12a and Table 12b.

SoCC ’24, November 20–22, 2024, Redmond, WA, USA P. C. Sruthi, Zinan Guo, Deming Chu, Zhengyan Chen, and Yongle Zhang

Action Steps(%)

Probing State 64.7

Command 13.5

Instrument Log 3.9

Debugger 1.0

Sniffing 2.9

Log Level 4.3

Tracing 5.3

Command 2.4

Watchpoint 1.9

(a) IC Actions

Info. (%)

Internal Data 23.0

Process Status 20.6

Command Result 13.9

Stack Trace 14.8

Memory Dump 9.6

Network 9.6

Filesystem 3.8

CPU 0.5

Input 1.0

Output 1.9

(b) IC data categories

Table 12: Information Collection characteristics

5.1.1 Collection of System-Specific Data. We are particularly

interested in how to automatically collect system-specific

data required in exploration. The first question we seek to

answer is – as system-specific data accounts for a minority of

data used in exploration, how does it impact the debugging

process? Contrary to our initial assumption that system-

20 40 60 80
Position of System-Specific Information Collection in Hypotheses (%)

0

2

4

6

8

N
um

be
r o

f S
te

ps

Figure 3: Distribution of system-specific information collec-
tion.

specific data collection primarily impacts the final stages

of hypothesis formulation, our analysis reveals a different

pattern. We investigated the distribution of system-specific

data collection within the causal graph of explanation steps,

examining its position in each hypothesis subgraph. As

depicted in Figure 3, the collection of such data is dispersed

throughout the entire hypothesis development process. This

finding suggests that the inability to gather system-specific

data can hinder debugging efforts at the earliest stages.

hbase-1 [94] (code snippet in Figure 4) shows an example of

system-specific information collection. The failure happened

during a read over network: the developer observed a large

read being broken into smaller reads across multiple network

connections. They located the reconnection at line 17. They

noticed that the condition on variable blockEnd can only

be satisfied by two data flows by analyzing source code: (1)

at line 10 when a backward seek is performed, (2) at line 21

1 int readAt(byte dest[], int off ,

2 int end , int len) {

3 seek(off);

4 read(dest , end , len);

5 }

6 void seek(long off) {

7 ...

8 if (!done) {

9 pos = off;

10 blockEnd = -1;

11 }

12 }

13 void read(byte dest[], int end , int len) {

14 while (retries > 0) {

15 try {

16 if (blockEnd == -1) {

17 // Form a new connection for read.

18 }

19 } catch (IOException e) {

20 LOG(e);

21 blockEnd = -1;

22 }

23 }

24 }

Figure 4: Simplified code snippet for hbase-1 [94]

when the connection is interrupted by an IOException. As

they see no IOExceptions in the logs, they decided to log

the seek position (off) in the function seek() to expand on

their hypothesis. Upon observing a consistent delta of 33

in the expectedly random offsets – which they insightfully

identified as the size of an HBase block header – they sus-

pected a concurrency bug resetting the read offset as the

potential root cause.

The developer utilizes program analysis (data flow anal-

ysis and symbolic constraint solving) and log analysis to

adaptively collect system-specific information, resulting in

a much more efficient and scoped information collection

process. Though some existing works [70, 101] propose so-

lutions to collect additional information automatically for

debugging using control- and data-flow analysis, developers’

log placement pruning practices utilize more advanced tech-

niques combining symbolic constraint solving (constraints

on blockEnd), anomaly analysis, and log analysis. This of-

fers a promising avenue for efficient adaptive information

collection.

5.1.2 Other Challenges. We observe two more interesting

challenges during information collection. The first challenge

is a compromised crime scene, in which failure-related in-

formation was wiped out, often due to automated failure

recovery. For example, in kube-2 [66], when investigating

whether a high log production rate could have caused the

Demystifying the Fight Against Complexity SoCC ’24, November 20–22, 2024, Redmond, WA, USA

fluentd subsystem of a Kubernetes deployment to run out

of memory, the developer mentions, “Unfortunately, I do

not have access to the log files from right before the issue

occurred anymore, and do not have a way to dig deeper at

this time”.

Finding 3. In 8% of all information collection steps,
the additional collected information existed in the orig-
inal failure execution but was wiped out, often due to
automated recovery.

The other challenge is the sheer variety in the number

of tools of which knowledge is required to obtain all the

information needed to debug or diagnose a failure. Across

all cases studied, we identified 72 unique tools used, with

an average of 1 tool per case, going as high as 8 for a case

such as kube-3 [4], for a failure that spanned Kubernetes, a

Docker daemon, and systemd.

5.2 Online Interventions
“Observation is a passive science, experimentation
an active science.”

— Claude Bernard

When the developer has constructed a hypothesis for the

root cause, they often come up with interventions – actions

that actively change the execution of the system, includ-

ing restarting nodes or processes, updating software, code

changes, and configuration changes – to fix the root cause or

mitigate its consequences, in addition to confirming or ruling
out their hypothetical causal chains that lead to the symptom.

Finding 4. The prevalence of online interventions
(11.3%) is on par with information collection (12%),
highlighting its significant role in live debugging.

A simple step in hdfs-11 [9] demonstrates the effective-

ness of interventions in debugging. When the developer is

debugging a performance issue in JournalNode writes, they

say, “In order to further determine whether it is a problem

with the JN service itself, we decided to restart the JN service

to see if the JN lag phenomenon can disappear.” When they

restarted it, they found the problem still existed and ruled

out a JournalNode fault as the cause.

Many interventions are performed after a developer is

fairly confident of the hypothesis, where the intervention

serves merely as a confirmation (e.g., deploying a fix or

workaround with high confidence) instead of a debugging

aid. We investigate how many interventions served a signifi-

cant diagnostic purpose as in hdfs-11 [9] above. In particular,

Category Example Effects Total (%)

Configuration

U: 53%, C: 47%
Disable logging

Swap/Disable modules

Change timeout/retry config

Horizontal scaling

Resource changes

Swap out storage

Reduce load

Other system-specific

45.4

Admin/User

Command

U: 54%, C: 46%

Kill process

Skip/Delete data

Perform failover

Reduce load

Others system-specific

13.3

Upgrade

U: 62%, C: 38%
Upgrade modules 8.2

Restart

U: 82%, C: 18%
Restart component

Perform failover

Reclaim memory/resources

22.4

Source Code

U: 19%, C: 81%
Skip corrupt data

Swap algorithms

Disable/deprecate functionality

Enforce timeout for function

Others system-specific

18.4

Hardware

U: 0%, C: 100%
Replace network switch 1.0

Table 13: Category of interventions. U and C denote whether
an intervention was performed with a hypothesis that was
“Unconfirmed” and “Confirmed” respectively.

we labeled intervention steps as using “Unconfirmed” hy-

potheses of the root cause if the developer did not have

a plan using the intervention to eliminate the failure, and

“Confirmed” if they were deploying a fix or workaround to

eliminate the failure with high confidence.

Finding 5. Over half (51.5%) of interventions were per-
formed when developers were clearly unsure of their
hypothesis, indicating that they actively use interven-
tions as a debugging aid.

The result shows most interventions are performed for

diagnosis purposes instead of confirmation purposes. The ex-

act behaviors tested by interventions are shown in Table 13.

5.2.1 Automated Interventions for Debugging. Our analysis
(Table 13) reveals opportunities to perform automated online

interventions for debugging purposes.

SoCC ’24, November 20–22, 2024, Redmond, WA, USA P. C. Sruthi, Zinan Guo, Deming Chu, Zhengyan Chen, and Yongle Zhang

Finding 6. Almost half (45.4%) of interventions are
configuration changes.

For instance, developers frequently adjust configurations

for debugging purposes, despite software patches being the

majority (53.4%) of root cause fixes applied to all cases. Impli-
cation:Adjusting failure-related configuration options is the
most popular intervention strategy. However, automation of

this strategy is only discussed in the context of security to

avoid CVEs [62, 65] at compile time, but not live debugging

cloud failures in production.

Finding 7. A large portion (22.4%) of interventions
are node restarts with 82% of them being performed
before a well reasoned hypothesis is reached.

The traditional practice – rebooting computers to resolve

failures – is a common strategy for debugging purposes in

cloud systems. With distributed systems having many fault-

tolerant components, node restart is a very common action

to verify hypotheses such as “a component is behaving ab-

normally”, with the assumption that the reboot and failover

mechanism clears the state of the component that is related to

the failure. Implication: Automated diagnosis tools should

utilize the fault-tolerance mechanism of distributed systems

to perform experiments. In addition, fault-tolerance mecha-

nisms enable cloud systems to introduce fine-grained inter-

vention knobs for debugging purposes as long as such knobs

are tolerated by fault-tolerance mechanisms (§ 5.2.2).

Finding 8. The required interventions may not be able
to be performed (3.1% of interventions).

In addition, we observe that developers are eager to per-

form an intervention but are unable to due to the lack of

intervention mechanisms. For example, in kube-4 [8], the de-
veloper wished to increase thread queue capacity when faced

with an error from a component that said that the requests

were rejected, and the number of queued tasks was greater

than the capacity. However, this variable was not config-

urable, and led the developers to solve the problem through

other means. This highlights the need for more intervention

knobs for live debugging.

5.2.2 Fine-Grained Knob Injection for Debugging. All inter-
ventions performed by developers other than source code

changes and hardware fixes indicate knobs that developers
are free to tune at runtime to test the system. Given how

heavily these interventions are used, system design should

Cache Read
Cache MissWrite

Through
Cache

Cache Read
Request

Read Request

Application Replacement

Read

Backing Store

1

2

3

4

5

6

(a) Disable cache (b) Disable cache
replacement

(c) Disable cache read
(but allow for replacement)

(d) Use cache (e) Repeat direct read
on cache miss

(g) Drop missed
reads

(f) Repeat read on cache
hit

1 3 4 5 2 1 3 5 2 6

1 3 4 5 63 4 5 6 3 4 1 2

1 2

3 4

Figure 5: A hypothetical example of how different interven-
tional knobs could be used to diagnose a failure. (a-g) rep-
resent knobs. (1-6) represent code paths. Enabling/disabling
the different code paths serves to isolate the root cause.

strive to include knobs for the examples mentioned in Ta-

ble 13 not just for modular design or reliability, but especially

for diagnosability – to test more fine-grained patterns in sys-

tem behavior.

Source code interventions (especially those that did not

follow confident hypotheses and did not lead to fixes) in-

dicate knobs that developers wished they had, but did not.

For example, in hdfs-8 [6], the developer is debugging a per-

formance problem in a large Hadoop cluster that manages

petabytes of data. They form a hypothesis that frequent lock-

ing of the NameNode lock is the cause. They then try a

number of measures in rapid succession, such as adjusting

a configuration controlling frequency of NameNode heart-

beats (which could grab the NameNode lock frequently), and

changing the source code to change the NameNode lock from

fair mode (assigned in arrival order) to non-fair mode (en-

try order is unspecified, but usually has higher throughput).

Being uncertain of what could be the bottleneck to be tack-

led, the developers made these code changes in production
to test their hypotheses. In other cases, developers also in-

cluded other interventional knobs in their source code such

as skipping over corrupt items while processing in a loop

(hdfs-4 [14]), and removing locks (hdfs-15 [13], Figure 6).
To illustrate the feasibility of fine-grained knob injection

in detail, we consider a situation inspired by kafka-14 [88]
(Figure 5), wherein a memory leak occurred in the cache

read. In this situation, if the developer knows that applica-

tion reads are causing the leaky behavior, but does not know

exactly where, they could selectively enable or disable cer-

tain parts of the code. As shown in the figure, the options

enumerate ways that an application that uses a cache and

backing store could selectively use different code paths to

enumerate possibilities. For example, option (c) is a possi-

bility where an application could issue a read to a cache,

but also directly to the backing store, ignoring the result of

Demystifying the Fight Against Complexity SoCC ’24, November 20–22, 2024, Redmond, WA, USA

1 Node[] chooseTargets(int nReplicas , Type t) {

2 Node[] targets;

3 while (nReplicas > 0) { // replicas needed

4 Node node = chooseNextRandom(t);

5 if (node == NULL) // checked all nodes

6 break;

7 targets.add(node);

8 nReplicas --;

9 }

10 return targets;

11 }

12 Node chooseNextRandom(Type t) {

13 Node[] candidates;

14 for (Node n : allNodes ()) {

15 if (n.hasStorageType(t)) // grabs a lock

16 candidates.add(n);

17 }

18 return random(candidates);

19 }

Figure 6: Simplified code snippet for hdfs-15 [13]

the cache read. Option (g) is more aggressive, dropping any

reads that are not in the cache entirely. Between all of the

options, the developers can narrow down the cause to any

of the single code paths.

Implication: Our analysis reveals the need for, and feasibil-

ity of knob injection to increase the diagnosability of cloud

systems in production. Frameworks that can safely inject

more fine-grained knobs make it much easier to evaluate

hypotheses in production. Existing work and tools make use

of interventions, mainly fault injection [33, 41, 84] among

others [51]. However, these works either serve the purpose

of testing, or are not suited for production use.

5.2.3 Safety Concerns in Interventions. Performing inter-

ventions in production environments inherently comes with

certain risks, evidenced by 2.6% of documented interventions

having negative consequences.

Finding 9. Interventions may have negative conse-
quences (2.6% of interventions); these consequences are
crucial to avoid for production systems.

We demonstrate how this happened in hdfs-15 [13] (Fig-
ure 6). The developer is diagnosing a performance delay in

the chooseTargets() function, which iterates through all

nodes in the cluster and randomly picks nReplicas nodes
with specified node type t. It invokes the hasStorageType()
function at line 15, which grabs a lock and releases it. The

developer formulated one hypothesis – the frequent lock

acquisition was causing the delay – and removed the lock

operation. However, it made things worse and completely

overloaded their NameNode. It was because the actual cause

– too many loop iterations at line 3 due to not enough good

nodes of type t – conflicted with their hypothesis in such

a way that the intervention based on their hypothesis – re-

moving the lock – saturated the NameNode CPU by iterating

through all nodes in the cluster repeatedly.

Implication: Before performing an intervention in produc-

tion (or injecting a knob), it is crucial to assess the risk of

potential negative consequences if, instead, an alternative

hypothesis is true. Risk assessment should be performed for

any online intervention. This is a unique requirement com-

pared to intervention-based offline test failure debugging

tools [51], which are free to perform arbitrary executionmod-

ifications. hdfs-15 [13] hints the feasibility of an automated

risk assessment tool: Figure 6 is simplified from 150 lines

of code, which is potentially feasible for program analysis

techniques, such as symbolic execution, to analyze execution

paths, formulate hypotheses, and predict consequences.

5.3 Offline Reproduction
Offline failure reproduction is one of the most important [42]

prerequisites for successful debugging, yet a well-known

challenging task for production failures.

Finding 10. Most (78.5%) failures were completely
diagnosed online. Among all cases reproduced offline
(21.5%), half (10.8%) were reproduced after the root
cause was diagnosed.

Bettenburg et al. [42] shows that most (80%) single-node

application failures are diagnosed given reported reproduc-

tion steps. In comparison, reproduction is mostly (89.2%)

unavailable before the root cause is diagnosed for produc-

tion cloud system failures. This calls for better support for

live debugging techniques, such as adaptive information col-

lection and automated knob injection for interventions as

discussed previously. It alsomotivates research on record and

replay [54, 77], automated offline reproduction [110] tech-

niques to overcome bottlenecks such as recording overhead

and path explosion when analyzing long execution traces.

Finding 11. About a fifth (17.9%) of the successful re-
productions requires ad-hoc modifications to the source
code in order to enforce timing constraints.

As shown in Table 14, in the successful reproductions, we

study what special conditions developers enforce or simu-

late, including faults, timing constraints, and software or

hardware heterogeneity.

SoCC ’24, November 20–22, 2024, Redmond, WA, USA P. C. Sruthi, Zinan Guo, Deming Chu, Zhengyan Chen, and Yongle Zhang

Condition Cases (%)

Fault 17.9

Timing 28.6

Heterogeneity 3.6

Table 14: Special cond.

We find that special tim-

ing constraints are enforced

either through ad-hoc mod-

ifications to the source code

(17.9%) or stress testing

(10.7%). For example, kafka-
6 [15] required a specific

condition to be held: a partition should not have a leader

for a specific period of time. To enforce this in offline repro-

duction, they modified a heartbeat timer to not check for a

leader.

Implication: Enforcing timing constraints through a gen-
eral interface is needed for easy reproduction of cloud fail-

ures. Tools like IMUnit [67] and CONCURRIT [50] provide

domain-specific languages to specify and enforce thread

scheduling constraints for multi-threaded applications. Simi-

lar techniques are necessary to specify and enforce network

message scheduling constraints for distributed systems.

6 CLOUD-RELATED CHALLENGES AND
NOVEL DEBUGGING STRATEGIES

In this section, we discuss challenges inherent to or ampli-

fied by production cloud environments, as evidenced by our

analysis of hypothesis forking reasons (§ 4.2), and present

developers’ novel debugging strategies to address such chal-

lenges.

Finding 12. Challenges amplified in the production
cloud environment account for a major portion (black-
box reasoning (44.6%) and concurrency (0.9%)) of the
hypothesis forking reasons. Meanwhile, unique fea-
tures of distributed systems such as distributed partial
failure modes, automated failure recovery, network
message across nodes, as well as dynamic network and
component dependency in microservices, constitute a
non-trivial portion (14.4%).

6.1 Partial Failures
In our dataset, most failures are partial or gray failures [63,

78]: they did not involve the complete stop or crash of a

process, hardware failure, or failure of a network link. This is

reflected in the hypothesis forking reasons namely blackbox

reasoning at component boundaries, reasoning about partial

failure modes, failure recovery, and network messages.

Developers address these challenges by collecting infor-

mation on component boundaries and failure recovery logic

to perform anomaly detection. Such information is often

not available, as evidenced by a developer’s quote – “Find-

ing when the NameNode failed over was surprisingly hard.

Tools like Grafana and SmartSense don’t seem to track this

out of the box” (kube-4 [8]). In fact, we find that 9.6% of

information collection steps collect inter-component data.

Though existing works [63, 78] have improved observability

at component boundaries to detect partial failures, collect-

ing information about failure recovery and partial failure

conditions have yet to be investigated.

In some cases, partial failures manifest as components of

a certain type failing, while others of that type do not. An

interesting strategy developers adopted in this scenario is

utilizing the symmetry of nodes, and patterns derived from

them. In 14.3% of execution comparison steps in exploration,

developers utilized symmetry among replicated data and

nodes to find common or differing properties as potential

causes. In hdfs-11 [9], the developer observes differences in
latency between multiple JournalNodes to a NameNode, to

determine whether the NameNode is faulty or not.

6.2 Concurrency
The most ingenious strategies we observed were adopted

by developers when debugging concurrency issues, allow-

ing them to short-circuit their reasoning. When searching

backwards from a failure, developers rarely consider con-

currency issues initially. Instead, they utilize unique indica-
tors for concurrency issues – specific patterns in runtime

data that are suspected to be a result of concurrency issues

such as data races and message reordering. These include

shared variables with unusual values (hive-6 [24], hbase-
1 [94]), observations of simultaneous exceptions from
different threads (hdfs-4 [14], fastdfs-1 [3]), observing un-
expected timing relationships between logs from dif-
ferent threads (in the case of hdfs-6 [1], the developers

observed seemingly unrelated logs between threads perform-

ing copy and delete happening simultaneously, repeatedly),

or using a “magic number” as a concurrency indicator

(as mentioned in hbase-1 [94]). In the last case, the devel-

oper observed a consistent delta of 33 in the offsets, which

are expected to be random. They perceptively identified this

number as the size of an HBase block header – and suspected

a concurrency bug resetting the read offset as the potential

root cause. These indicators allow developers to consider

causal explanations involving interactions between multi-

ple threads on an as-needed basis, rather than considering

all possible thread interleavings right from the beginning.

Figure 7 shows an example of how developers tracked from

multiple errors in different threads to the problematic shared

variable in fastdfs-1 [3].

Finding 13. Developers use concurrency indicators as
clues that they should search for interleaved execution
paths in a small scope.

Demystifying the Fight Against Complexity SoCC ’24, November 20–22, 2024, Redmond, WA, USA

do_append_file (...) {
 if (this.storageServer

!= null) {
 return false;
 } else {
 this.storageServer =
initializeStorage(...)
 }
 ...
 try {
 this.storageServer
 .close();

do_upload_file (...) {
 if (this.storageServer

!= null) {
 return false;
 } else {
 this.storageServer =
initializeStorage(...)
 }
 ...
 try {
 this.storageServer
 .close();

do_upload_file (...) {
 if (this.storageServer

!= null) {
 return false;
 } else {
 this.storageServer =
initializeStorage(...)
 }
 ...
 try {
 this.storageServer
 .close();
 } finally {
 this.storageServer
 = null;
 }
}

Exceptions in different threads

Thread 1

[ERROR] [Thread 2]
java.lang.NullPointerException

at org.csource.fastdfs.StorageClient.
do_upload_file(StorageClient.java:842)

[ERROR] [Thread 3]
java.lang.NullPointerException

at org.csource.fastdfs.StorageClient.
do_append_file(StorageClient.java:646)

Thread 2 Thread 3

1

2

4

5

3

6

Hypothesis: Similar data access failures in multiple threads →
May involve concurrency. Look for global variables with interactions
between threads.

Figure 7: An example of special reasoning by which the
developer uses a concurrency indicator pattern to scope the
exact paths to analyze. The presence of exceptions inmultiple
threads allows the developer to reason that the initialization
(1) of the storageServer variable by Thread 1 is read (2 , 3)
by the other threads, but is released by Thread 1 (4) before
the others (5 , 6), which causes the (NullPointer) exceptions.

6.3 High Availability
As cloud systems are designed to be highly available and

continuously running, developers face unique challenges

debugging failures that become apparent only over extended

periods of time. In hdfs-5 [7], the root cause, a memory

leak, accumulates over the course of six months, resulting

in a NodeManager OutOfMemory error. We term this as fail-
slow software failure (different from fail-slow hardware fail-

ures [60]), which is characteristic of long-running production

systems.

The developer used a unique strategy – knowledge of code

execution frequency – to quickly narrow down to the po-

tential root cause: because the OutOfMemory error happened
every half a year, they suspected that an infrequently exe-

cuted code path was leaking memory, and quickly found two

such code snippets (exception handlers) that missed deal-

location statements. These turned out to be the exact root

cause.

M
1

M
em

or
y

 (%
)

...

M
2

M
em

or
y

 (%
)

1:00 1:30 2:00 2:30 3:00

1:00 1:30 2:00 2:30 3:00

1:00 1:30 2:00 2:30 3:00
Time (h:mm)

100

100

M
3

M
em

or
y

 (%
)

100

M1

OOM, pass task to

OOM, pass task to

Task submitted

M2

M3

Hypothesis

Figure 8: Utilizing time series patterns in memory utiliza-
tion on multiple machines to identify cascading failures.

Finding 14. Using information about execution fre-
quency is effective for debugging fail-slow software
failures.

Implication: To the best of our knowledge, though fail-slow

hardware failures [60] have been investigated recently, fail-
slow software failures are not well-studied. How to estimate

and utilize execution frequency for automated debugging is

a promising yet uninvestigated technique.

6.4 Cascading Failures
Cascading failures [74, 100] and vicious cycle failures [86] are

unique failures in cloud systems with severe consequences.

They are often closely coupled with partial failures since

they require the failure to propagate, and can form a cycle

across components.

We observe that developers utilize special time series pat-

terns to debug these kinds of failures quickly. In etcd-3 [25]
(Figure 8), there was a cycle in the system that continuously

caused an instance that ran out of memory to offload its

tasks to another instance, and so on. The developer initially

observed the OOMs on the different nodes and started reason-

ing about different hypotheses regarding what could cause

the code to leak resources. However they could not find a

satisfactory explanation. It was only when they observed

the cyclical pattern in the memory utilization and failures

of the different nodes, did they realize that it was actually a

cascading failure, and this helped them to quickly hone in

on the correct explanation, which was that a specific heavy

client operation was being shuttled from one instance to the

next, causing failures.

SoCC ’24, November 20–22, 2024, Redmond, WA, USA P. C. Sruthi, Zinan Guo, Deming Chu, Zhengyan Chen, and Yongle Zhang

6.5 Dynamism
Microservice systems exhibit the phenomenon of dynamism;

complex and continuously changing environments due to the

ability to quickly scale, swap out independent components

or services, and develop user-defined architectures and appli-

cations. This leads to several unique challenges in debugging,

as the dependencies in the system are ever-changing. One

such challenge was faced in kube-1 [61], wherein an IP as-

signed to the Load Balancer was changed dynamically, and

the change did not propagate to other nodes and pods, which

caused the developer to need to look for anomalies in net-

work data, and infer why connectivity that should have been

present was not. In kube-6 [82], developers encountered a

situation where different containers were placed in different

Virtual Private Clouds, due to configuration changes, which

led to a loss of connectivity between different services. While

dynamism has been considered and used to develop tools

for debugging [115], more complex dynamism patterns such

as the relationship between the network configurations of

different instances as in the case of kube-6 [82] above are yet
to be examined deeply.

7 RELATEDWORK
We present related work in studies on debugging, studies on

cloud failures, and debugging tools for cloud failures.

7.1 Studies on debugging
The debugging procedure has been studied extensively, in

many different contexts [43, 49, 57, 72, 73, 90, 99, 114]. Most

studies rely on gathering anecdotes [49], conducting inter-

views with, or passing out questionnaires to developers

[73, 114] or students [72, 99]. More closely, the work by Zhou

et al. [114] studies debugging procedures in microservice sys-

tems – however, it focuses on a coarser characterization of

the steps involved, and the effectiveness of log based strate-

gies on debugging. The work by Böhme et al. [43] studies

debugging by professional developers in more detail, and

derives its results from a user study of developers debugging

local, single machine failures. Studying cloud production

incidents leads to a different set of findings, especially those

on experimentation, that are not observed when debugging

local programs. Recently, researchers from Microsoft studied

common root causes of production incidents and root cause

labeling given a postmortem report [48] in Microsoft Azure,

but they did not analyze how the root causes are diagnosed.

7.2 Studies on cloud failures
Failures in production cloud systems have been explored

widely [59, 68, 71, 75, 78, 87, 103, 112], studying the charac-

teristics of bugs, their manifestations, fixes, and so on, with

some works focusing on specific categories of bugs such as

performance [68], concurrency [71], partial failure [78] and

upgrade [112] bugs. However, they do not study the actual

debugging steps taken to diagnose or debug the failures.

7.3 Debugging tools for cloud failures
There is extensive research [40, 44, 83, 104] on debugging

tools for single-node applications. Debugging techniques for

cloud failures are mostly based on log analysis [39, 110, 113],

distributed tracing [52, 53, 80, 91], anomaly analysis [47, 93,

96, 102, 109], and statistical debugging (along with collect-

ing targeted information) [56, 70, 76, 95]. Others focus on

utilizing special hardware support [69, 70], and checkpoint-

ing strategies [97]. Our study complements these tools by

showing what information is required to make their analyses

more accurate.

Recently, there is work on failure reproduction [45, 110],

failure minimization [89], root cause localization [70, 104,

111], as well as interactive debugging [54, 77] for distributed

systems. Our study complements them by discovering chal-

lenges not addressed and strategies not utilized in these tools.

8 CONCLUSION
This paper presents the first in-depth, observational study

of live debugging in production cloud systems. We provide

taxonomies of a variety of activities and strategies performed

when debugging. We identify unique challenges faced in di-

agnosing production cloud failures and developers’ novel

debugging techniques to fight against them. In addition, we

quantify the requirement of effective anomaly detection for

end-to-end debugging, and analyze the usage of interven-

tions for live debugging.

9 ACKNOWLEDGEMENTS
We thank Ramnatthan Alagappan, our shepherd, and the

anonymous reviewers for their feedback and comments. We

would also like to thank Adrian Raj and Yiqi Hu for analyzing

debugging experience documents. This research is supported

by NSF 2140305.

REFERENCES
[1] 2016. NameNode RepicationMonitor Exception Tracking- Hexiaoqiao.

Retrieved 2022-12-10 from https://hexiaoqiao.github.io/blog/2016/09/

13/namenode-repicationmonitor-exception-trace/

[2] 2016. Remember a DataNode Slow Start Problem - Blog of People

on the Android Road - CSDN Blog. Retrieved 2023-04-12 from

https://blog.csdn.net/Androidlushangderen/article/details/50500136

[3] 2017. It Must Be All Your Fault! - A Troubleshooting Experi-

ence of FastDFS Concurrency Problems- Pure Smile- Blog Garden.

Retrieved 2023-09-04 from https://www.cnblogs.com/ityouknow/p/

8123998.html

[4] 2019. k8s|A Troubleshooting-Tencent Cloud Developer Community-

Tencent Cloud. Retrieved 2022-12-09 from https://cloud.tencent.

com/developer/article/1444074

https://hexiaoqiao.github.io/blog/2016/09/13/namenode-repicationmonitor-exception-trace/
https://hexiaoqiao.github.io/blog/2016/09/13/namenode-repicationmonitor-exception-trace/
https://blog.csdn.net/Androidlushangderen/article/details/50500136
https://www.cnblogs.com/ityouknow/p/8123998.html
https://www.cnblogs.com/ityouknow/p/8123998.html
https://cloud.tencent.com/developer/article/1444074
https://cloud.tencent.com/developer/article/1444074

Demystifying the Fight Against Complexity SoCC ’24, November 20–22, 2024, Redmond, WA, USA

[5] 2019. The Task Submitted by Hive to Yarn Has Been Running Trou-

bleshooting_hive on Spark Task Running Yarn Ui Shows Running.

Retrieved 2023-04-17 from https://blog.csdn.net/u013332124/article/

details/89283727

[6] 2020. Remember a Super-Trillion-Scale Hadoop NameNode Per-

formance Troubleshooting Process. Retrieved 2023-04-15 from

https://blog.csdn.net/weixin_44253169/article/details/105564433

[7] 2020. Solve the Memory Leak Problem That NodeManager Fre-

quently Triggers FULL-GC after Running for about Half a Year.

Retrieved 2022-12-09 from https://blog.csdn.net/weixin_43990680/

article/details/104754341

[8] 2020. Why We Switched from Fluent-Bit to Fluentd in 2

Hours. https://prometheuskube.com/why-we-switched-from-fluent-

bit-to-fluentd-in-2-hours

[9] 2021. Analysis and Troubleshooting of a HDFS JournalNode Transac-

tion Lag Problem. Retrieved 2022-12-09 from https://blog.csdn.net/

Androidlushangderen/article/details/112744149

[10] 2021. Big Data Troubleshooting Series-HIVE Stepping on the Pit-

HIVE-15642_org.Apache.Hadoop.Hive.thrift_Ming Ge’s IT Essay

Blog-CSDN Blog. Retrieved 2023-04-12 from https://blog.csdn.net/

MichaelLi916/article/details/119902075

[11] 2021. An HBase &HDFS Short-Circuit Read Odyssey. Retrieved 2024-

10-12 from https://blogsarchive.apache.org/hbase/entry/an-hbase-

hdfs-short-circuit

[12] 2021. Record the Upgrading Process of Hadoop Cluster with Thou-

sands of Nodes in the Database. Retrieved 2022-12-12 from

https://zhuanlan.zhihu.com/p/163352048

[13] 2021. Record the Upgrading Process of Hadoop Cluster with Thou-

sands of Nodes in the Database (Part 3). Retrieved 2023-04-16 from

https://zhuanlan.zhihu.com/p/163352048

[14] 2021. Troubleshooting a Problem That HDFS Snapshot Cannot Be

Deleted_hadoop Deletion Error Has a Snapshot. Retrieved 2023-04-

17 from https://blog.csdn.net/Androidlushangderen/article/details/

113446906

[15] 2021. When Kafka Went Offshore. https://blog.gojek.io/when-kafka-

went-offshore/

[16] 2022. Apache Cassandra | Apache Cassandra Documentation. Re-

trieved 2022-12-13 from https://cassandra.apache.org/_/index.html

[17] 2022. Apache Flink: Stateful Computations over Data Streams. Re-

trieved 2022-12-13 from https://flink.apache.org/

[18] 2022. Apache HBase – Apache HBase™ Home. Retrieved 2022-12-13

from https://hbase.apache.org/

[19] 2022. Apache Hive. Retrieved 2022-12-13 from https://hive.apache.

org/

[20] 2022. Apache Kafka. Retrieved 2022-12-13 from https://kafka.apache.

org/

[21] 2022. Google Cloud Computing Services. Retrieved 2022-12-13 from

https://cloud.google.com/

[22] 2022. Hadoop Distributed File System (HDFS). Retrieved 2022-

12-13 from https://hadoop.apache.org/docs/stable/hadoop-project-

dist/hadoop-hdfs/HdfsDesign.html

[23] 2022. Kubernetes: Production-Grade Container Orchestration. Re-

trieved 2022-12-13 from https://kubernetes.io/

[24] 2023. Hive on Mr Job Repeated Execution Problem Troubleshoot-

ing_hive Re-Read Execution-CSDN Blog. Retrieved 2023-11-28 from

https://blog.csdn.net/u013332124/article/details/106575443

[25] 2023. Remember to Troubleshoot the ETCD OOM Problem Once.

Retrieved 2023-11-29 from https://zhuanlan.zhihu.com/p/571473832

[26] 2023. Twists and Turns - Remember a K8S Cluster Application Trou-

bleshooting - JD Cloud Developer Community. Retrieved 2023-11-30

from https://developer.jdcloud.com/article/1538

[27] 2024. Apache Spark™ - Unified Engine for Large-Scale Data Analytics.

Retrieved 2024-10-15 from https://spark.apache.org/

[28] 2024. Etcd. Retrieved 2024-10-15 from https://etcd.io/

[29] 2024. Gemini. Retrieved 2024-10-06 from https://gemini.google.com

[30] 2024. Gojek Super App. Retrieved 2024-10-15 from https://www.

gojek.com/en-id

[31] 2024. Hive Cannot Submit to Yarn_08235.15.1 Analysis of the

Problem of Slow Hive Query Caused by Slow HDFS - CSDN Blog.

Retrieved 2024-10-12 from https://blog.csdn.net/weixin_42139302/

article/details/112092820

[32] 2024. MongoDB: The Developer Data Platform | MongoDB. Retrieved

2024-10-15 from https://www.mongodb.com/

[33] 2024. Netflix/Chaosmonkey. Netflix, Inc.. https://github.com/Netflix/

chaosmonkey

[34] 2024. PagerDuty | Real-Time Operations | Incident Response | On-Call.

Retrieved 2024-10-15 from https://www.pagerduty.com/

[35] 2024. Redis - The Real-time Data Platform. Retrieved 2024-10-15

from https://redis.io/

[36] 2024. TiDB, Powered by PingCAP. Retrieved 2024-10-15 from

https://www.pingcap.com/

[37] 2024. Zookeeper Once Fault Handling_exception Causing Close.

Retrieved 2024-10-15 from https://blog.csdn.net/huochen1994/article/

details/79288194

[38] 2024. ZooKeeper Overview. Retrieved 2024-10-16 from https:

//zookeeper.apache.org/doc/r3.1.2/zookeeperOver.html

[39] Marcos K Aguilera, Jeffrey CMogul, Janet LWiener, Patrick Reynolds,

and Athicha Muthitacharoen. 2003. Performance debugging for dis-

tributed systems of black boxes. ACM SIGOPS Operating Systems

Review 37, 5 (2003), 74–89.

[40] Gautam Altekar and Ion Stoica. 2009. ODR: Output-Deterministic

Replay for Multicore Debugging. In Proceedings of the ACM SIGOPS

22nd Symposium on Operating Systems Principles - SOSP ’09. ACM

Press, Big Sky, Montana, USA, 193. https://doi.org/10.1145/1629575.

1629594

[41] Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein. 2015.

Lineage-Driven Fault Injection. In Proceedings of the 2015

ACM SIGMOD International Conference on Management of Data

(SIGMOD ’15). Association for Computing Machinery, New York,

NY, USA, 331–346. https://doi.org/10.1145/2723372.2723711

[42] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin

Weiss, Rahul Premraj, and Thomas Zimmermann. 2008.

What Makes a Good Bug Report?. In Proceedings of the 16th

ACM SIGSOFT International Symposium on Foundations of

Software Engineering. 308–318.

[43] Marcel Böhme, Ezekiel O. Soremekun, Sudipta Chattopadhyay, Ema-

murho Ugherughe, and Andreas Zeller. 2017. Where Is the Bug and

How Is It Fixed? An Experiment with Practitioners. In Proceedings of

the 2017 11th Joint Meeting on Foundations of Software Engineering.

117–128.

[44] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Soft-

ware Testing: Three Decades Later. Commun. ACM 56, 2 (Feb. 2013),

82–90. https://doi.org/10.1145/2408776.2408795

[45] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upamanyu Sharma,

Ruoyu Wang, and Insu Yun. 2018. REPT: Reverse Debugging of

Failures in Deployed Software. In 13th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 18). 17–32.

https://www.usenix.org/conference/osdi18/presentation/weidong

[46] Datadog. 16:32:45 -0400 -0400. Cloud Monitoring as a Service | Data-

dog. Retrieved 2022-10-14 from https://www.datadoghq.com/

https://blog.csdn.net/u013332124/article/details/89283727
https://blog.csdn.net/u013332124/article/details/89283727
https://blog.csdn.net/weixin_44253169/article/details/105564433
https://blog.csdn.net/weixin_43990680/article/details/104754341
https://blog.csdn.net/weixin_43990680/article/details/104754341
https://prometheuskube.com/why-we-switched-from-fluent-bit-to-fluentd-in-2-hours
https://prometheuskube.com/why-we-switched-from-fluent-bit-to-fluentd-in-2-hours
https://blog.csdn.net/Androidlushangderen/article/details/112744149
https://blog.csdn.net/Androidlushangderen/article/details/112744149
https://blog.csdn.net/MichaelLi916/article/details/119902075
https://blog.csdn.net/MichaelLi916/article/details/119902075
https://blogsarchive.apache.org/hbase/entry/an-hbase-hdfs-short-circuit
https://blogsarchive.apache.org/hbase/entry/an-hbase-hdfs-short-circuit
https://zhuanlan.zhihu.com/p/163352048
https://zhuanlan.zhihu.com/p/163352048
https://blog.csdn.net/Androidlushangderen/article/details/113446906
https://blog.csdn.net/Androidlushangderen/article/details/113446906
https://blog.gojek.io/when-kafka-went-offshore/
https://blog.gojek.io/when-kafka-went-offshore/
https://cassandra.apache.org/_/index.html
https://flink.apache.org/
https://hbase.apache.org/
https://hive.apache.org/
https://hive.apache.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://cloud.google.com/
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://kubernetes.io/
https://blog.csdn.net/u013332124/article/details/106575443
https://zhuanlan.zhihu.com/p/571473832
https://developer.jdcloud.com/article/1538
https://spark.apache.org/
https://etcd.io/
https://gemini.google.com
https://www.gojek.com/en-id
https://www.gojek.com/en-id
https://blog.csdn.net/weixin_42139302/article/details/112092820
https://blog.csdn.net/weixin_42139302/article/details/112092820
https://www.mongodb.com/
https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/chaosmonkey
https://www.pagerduty.com/
https://redis.io/
https://www.pingcap.com/
https://blog.csdn.net/huochen1994/article/details/79288194
https://blog.csdn.net/huochen1994/article/details/79288194
https://zookeeper.apache.org/doc/r3.1.2/zookeeperOver.html
https://zookeeper.apache.org/doc/r3.1.2/zookeeperOver.html
https://doi.org/10.1145/1629575.1629594
https://doi.org/10.1145/1629575.1629594
https://doi.org/10.1145/2723372.2723711
https://doi.org/10.1145/2408776.2408795
https://www.usenix.org/conference/osdi18/presentation/weidong
https://www.datadoghq.com/

SoCC ’24, November 20–22, 2024, Redmond, WA, USA P. C. Sruthi, Zinan Guo, Deming Chu, Zhengyan Chen, and Yongle Zhang

[47] Daniel Joseph Dean, Hiep Nguyen, and Xiaohui Gu. 2012. UBL: Unsu-

pervised Behavior Learning for Predicting Performance Anomalies in

Virtualized Cloud Systems. In Proceedings of the 9th International

Conference on Autonomic Computing - ICAC ’12. ACM Press, San

Jose, California, USA, 191. https://doi.org/10.1145/2371536.2371572

[48] Pradeep Dogga, Chetan Bansal, Richard Costleigh, Gopinath

Jayagopal, Suman Nath, and Xuchao Zhang. 2023. AutoARTS: Tax-

onomy, Insights and Tools for Root Cause Labelling of Incidents

in Microsoft Azure. In 2023 USENIX Annual Technical Conference

(USENIX ATC 23). 359–372.

[49] Marc Eisenstadt. 1997. My Hairiest Bug War Stories. Commun. ACM

40, 4 (April 1997), 30–37. https://doi.org/10.1145/248448.248456

[50] Tayfun Elmas, Jacob Burnim, George Necula, and Koushik Sen. 2013.

CONCURRIT: A domain specific language for reproducing concur-

rency bugs. In Proceedings of the 34th ACM SIGPLAN conference

on Programming language design and implementation. 153–164.

[51] Anna Fariha, Suman Nath, and Alexandra Meliou. 2020. Causality-

Guided Adaptive Interventional Debugging. In Proceedings of the

2020 ACM SIGMOD International Conference on Management of

Data (SIGMOD ’20). Association for Computing Machinery, New

York, NY, USA, 431–446. https://doi.org/10.1145/3318464.3389694

[52] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina

Delimitrou. 2021. Sage: practical and scalable ML-driven per-

formance debugging in microservices. In Proceedings of the

26th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems. 135–151.

[53] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna

Pancholi, and Christina Delimitrou. 2019. Seer: Leveraging big data to

navigate the complexity of performance debugging in cloud microser-

vices. In Proceedings of the twenty-fourth international conference

on architectural support for programming languages and operating

systems. 19–33.

[54] Dennis Geels, Gautam Altekar, Petros Maniatis, Timothy Roscoe,

and Ion Stoica. 2007. Friday: Global Comprehension for Distributed

Replay.. In NSDI, Vol. 7. 285–298.

[55] Supriyo Ghosh, Manish Shetty, Chetan Bansal, and Suman Nath. 2022.

How to fight production incidents? an empirical study on a large-

scale cloud service. In Proceedings of the 13th Symposium on Cloud

Computing. 126–141.

[56] Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg, Gabriel

Aul, Vince Orgovan, Greg Nichols, David Grant, Gretchen Loihle,

and Galen Hunt. 2009. Debugging in the (Very) Large: Ten Years of

Implementation and Experience. In Proceedings of the ACM SIGOPS

22nd Symposium on Operating Systems Principles (SOSP ’09). As-

sociation for Computing Machinery, New York, NY, USA, 103–116.

https://doi.org/10.1145/1629575.1629586

[57] John D. Gould and Paul Drongowski. 1974. An Exploratory Study of

Computer ProgramDebugging. Human Factors 16, 3 (1974), 258–277.

[58] Leo Gugerty and Gary Olson. 1986. Debugging by skilled and novice

programmers. In Proceedings of the SIGCHI conference on human

factors in computing systems. 171–174.

[59] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa,

Tiratat Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eli-

azar, Agung Laksono, Jeffrey F. Lukman, and Vincentius Martin. 2014.

What Bugs Live in the Cloud? A Study of 3000+ Issues in Cloud Sys-

tems. In Proceedings of the ACM Symposium on Cloud Computing.

1–14.

[60] Haryadi S Gunawi, Riza O Suminto, Russell Sears, Casey Golliher,

Swaminathan Sundararaman, Xing Lin, Tim Emami,Weiguang Sheng,

Nematollah Bidokhti, Caitie McCaffrey, et al. 2018. Fail-slow at scale:

Evidence of hardware performance faults in large production systems.

ACM Transactions on Storage (TOS) 14, 3 (2018), 1–26.

[61] Dominic Gunn. 2018. Kubernetes and the Menace ELB, the Tale of

an Outage. Retrieved 2023-04-13 from https://itnext.io/kubernetes-

and-the-menace-elb-the-tale-of-an-outage-c00bef678fc0

[62] David Ke Hong, Qi Alfred Chen, and Z Morley Mao. 2017. An

initial investigation of protocol customization. In Proceedings of

the 2017 Workshop on Forming an Ecosystem Around Software

Transformation. 57–64.

[63] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R. Lorch,

Yingnong Dang, Murali Chintalapati, and Randolph Yao. 2017. Gray

Failure: The Achilles’ Heel of Cloud-Scale Systems. In Proceedings

of the 16th Workshop on Hot Topics in Operating Systems. ACM,

Whistler BC Canada, 150–155. https://doi.org/10.1145/3102980.

3103005

[64] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin

Reed. 2010. ZooKeeper: Wait-free Coordination for Internet-scale

Systems.. In USENIX Annual Technical Conference, Vol. 8.

[65] Muhammad Adil Inam and Wajih Ul. 2022. Forensic analysis of

configuration-based attacks. In Proceedings of the 2022 Network and

Distributed System Security Symposium.

[66] Keilan Jackson. 2019. Post Mortem: Kubernetes Node OOM. Re-

trieved 2022-12-11 from https://www.bluematador.com/blog/post-

mortem-kubernetes-node-oom

[67] Vilas Jagannath, Milos Gligoric, Dongyun Jin, Grigore Rosu, and

Darko Marinov. 2010. IMUnit: improved multithreaded unit test-

ing. In Proceedings of the 3rd International Workshop on Multicore

Software Engineering. 48–49.

[68] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan

Lu. 2012. Understanding and Detecting Real-World Performance

Bugs. In Proceedings of the 33rd ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI ’12). As-

sociation for Computing Machinery, New York, NY, USA, 77–88.

https://doi.org/10.1145/2254064.2254075

[69] Baris Kasikci, Weidong Cui, Xinyang Ge, and Ben Niu. 2017. Lazy

Diagnosis of In-Production Concurrency Bugs. In Proceedings of the

26th Symposium on Operating Systems Principles. ACM, Shanghai

China, 582–598. https://doi.org/10.1145/3132747.3132767

[70] Baris Kasikci, Benjamin Schubert, Cristiano Pereira, Gilles Pokam, and

George Candea. 2015. Failure Sketching: A Technique for Automated

Root Cause Diagnosis of in-Production Failures. In Proceedings of the

25th Symposium on Operating Systems Principles. ACM, Monterey

California, 344–360. https://doi.org/10.1145/2815400.2815412

[71] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu,

and Haryadi S. Gunawi. 2016. TaxDC: A Taxonomy of Non-

Deterministic Concurrency Bugs in Datacenter Distributed Systems.

In Proceedings of the Twenty-First International Conference

on Architectural Support for Programming Languages and

Operating Systems. 517–530.

[72] Colleen M. Lewis. 2012. The Importance of Students’ Attention to

Program State: A Case Study of Debugging Behavior. In Proceedings

of the Ninth Annual International Conference on International

Computing Education Research (ICER ’12). Association for Comput-

ing Machinery, New York, NY, USA, 127–134. https://doi.org/10.

1145/2361276.2361301

[73] Bowen Li, Xin Peng, Qilin Xiang, Hanzhang Wang, Tao Xie, Jun Sun,

and Xuanzhe Liu. 2022. Enjoy Your Observability: An Industrial

Survey of Microservice Tracing and Analysis. Empirical Software

Engineering 27, 1 (Jan. 2022). https://doi.org/10.1007/s10664-021-

10063-9

https://doi.org/10.1145/2371536.2371572
https://doi.org/10.1145/248448.248456
https://doi.org/10.1145/3318464.3389694
https://doi.org/10.1145/1629575.1629586
https://itnext.io/kubernetes-and-the-menace-elb-the-tale-of-an-outage-c00bef678fc0
https://itnext.io/kubernetes-and-the-menace-elb-the-tale-of-an-outage-c00bef678fc0
https://doi.org/10.1145/3102980.3103005
https://doi.org/10.1145/3102980.3103005
https://www.bluematador.com/blog/post-mortem-kubernetes-node-oom
https://www.bluematador.com/blog/post-mortem-kubernetes-node-oom
https://doi.org/10.1145/2254064.2254075
https://doi.org/10.1145/3132747.3132767
https://doi.org/10.1145/2815400.2815412
https://doi.org/10.1145/2361276.2361301
https://doi.org/10.1145/2361276.2361301
https://doi.org/10.1007/s10664-021-10063-9
https://doi.org/10.1007/s10664-021-10063-9

Demystifying the Fight Against Complexity SoCC ’24, November 20–22, 2024, Redmond, WA, USA

[74] Jiaxin Li, Yuxi Chen, Haopeng Liu, Shan Lu, Yiming Zhang, Haryadi S.

Gunawi, Xiaohui Gu, Xicheng Lu, andDongsheng Li. 2018. Pcatch: Au-

tomatically Detecting Performance Cascading Bugs in Cloud Systems.

In Proceedings of the Thirteenth EuroSys Conference (EuroSys ’18).

Association for Computing Machinery, New York, NY, USA, 1–14.

https://doi.org/10.1145/3190508.3190552

[75] Sihan Li, Hucheng Zhou, Haoxiang Lin, Tian Xiao, Haibo Lin,

Wei Lin, and Tao Xie. 2013. A Characteristic Study on Failures

of Production Distributed Data-Parallel Programs. In 2013 35th

International Conference on Software Engineering (ICSE). IEEE,

963–972.

[76] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I.

Jordan. 2005. Scalable Statistical Bug Isolation. ACM SIGPLAN

Notices 40, 6 (June 2005), 15–26. https://doi.org/10.1145/1064978.

1065014

[77] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen

Lian, Jian Tang, Ming Wu, M. Frans Kaashoek, and Zheng

Zhang. 2008. D3S: Debugging Deployed Distributed Systems. In

NSDI. https://www.usenix.org/event/nsdi08/tech/full_papers/liu_

xuezheng/liu_xuezheng_html/

[78] Chang Lou, Peng Huang, and Scott Smith. 2020. Understanding,

Detecting and Localizing Partial Failures in Large System Software..

In NSDI, Vol. 20. 559–574.

[79] David E Lowell, Subhachandra Chandra, and Peter Chen. 2000. Explor-

ing failure transparency and the limits of generic recovery. In Fourth

Symposium on Operating Systems Design and Implementation

(OSDI 2000).

[80] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2015.

Pivot Tracing: Dynamic Causal Monitoring for Dis-

tributed Systems. In Proceedings of the 25th Symposium

on Operating Systems Principles (SOSP ’15). Association

for Computing Machinery, New York, NY, USA, 378–393.

https://doi.org/10.1145/2815400.2815415

[81] David McGinnis. 2020. Debugging From The Field: The Case of the

Empty Files. Retrieved 2022-12-11 from https://www.davidmcginnis.

net/post/debugging-from-the-field-the-case-of-the-empty-files

[82] Yash Mehrotra. 2020. The Case of the Missing Packet: An EKS Mi-

gration Tale. Retrieved 2024-06-06 from https://yashmehrotra.com/

posts/the-case-of-the-missing-packet-an-eks-migration-tale/

[83] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert

Noll, and Nimrod Partush. 2017. Engineering Record and Replay

for Deployability. In 2017 USENIX Annual Technical Conference

(USENIX ATC 17). 377–389. https://www.usenix.org/conference/

atc17/technical-sessions/presentation/ocallahan

[84] Cuong Pham, LongWang, Byung Chul Tak, Salman Baset, Chunqiang

Tang, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. 2017. Failure

Diagnosis for Distributed Systems Using Targeted Fault Injection.

IEEE Transactions on Parallel and Distributed Systems 28, 2 (Feb.

2017), 503–516. https://doi.org/10.1109/TPDS.2016.2575829

[85] Prometheus. 2022. Prometheus - Monitoring System & Time Series

Database. Retrieved 2022-10-14 from https://prometheus.io/

[86] Shangshu Qian, Wen Fan, Lin Tan, and Yongle Zhang.

2023. Vicious Cycles in Distributed Software Sys-

tems. In 2023 38th IEEE/ACM International Conference on

Automated Software Engineering (ASE). IEEE, Luxembourg,

Luxembourg, 91–103. https://doi.org/10.1109/ASE56229.2023.00032

[87] Ariel Rabkin and Randy Howard Katz. 2012. How Hadoop Clusters

Break. IEEE software 30, 4 (2012), 88–94.

[88] Sid Rathi. 2021. Solving a Native Memory Leak. https://medium.com/

expedia-group-tech/solving-a-native-memory-leak-71fe4b6f9463

[89] Colin Scott, Vjekoslav Brajkovic, George Necula, Arvind Krish-

namurthy, and Scott Shenker. 2016. Minimizing Faulty Exe-

cutions of Distributed Systems. In 13th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 16). 291–

309.

[90] Benjamin Siegmund, Michael Perscheid, Marcel Taeumel,

and Robert Hirschfeld. 2014. Studying the Advance-

ment in Debugging Practice of Professional Software

Developers. In 2014 IEEE International Symposium on

Software Reliability Engineering Workshops. 269–274. https:

//doi.org/10.1109/ISSREW.2014.36

[91] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat

Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan

Shanbhag. 2010. Dapper, a Large-Scale Distributed Systems Tracing

Infrastructure. (2010).

[92] Jacopo Soldani and Antonio Brogi. 2022. Anomaly detection and

failure root cause analysis in (micro) service-based cloud applications:

A survey. ACM Computing Surveys (CSUR) 55, 3 (2022), 1–39.

[93] Jacopo Soldani and Antonio Brogi. 2022. Anomaly Detection and

Failure Root Cause Analysis in (Micro) Service-Based Cloud Appli-

cations: A Survey. Comput. Surveys 55, 3 (Feb. 2022), 59:1–59:39.

https://doi.org/10.1145/3501297

[94] Hou Song. 2016. The Problem of Hbase Fast Reconnecting DataNode

- Discovery and Analysis. Retrieved 2022-12-10 from http://housong.

github.io/2016/hbase-reconnect-dn/

[95] Linhai Song and Shan Lu. 2014. Statistical De-

bugging for Real-World Performance Problems. In

Proceedings of the 2014 ACM International Conference on

Object Oriented Programming Systems Languages & Applications

(OOPSLA ’14). Association for Computing Machinery, New York,

NY, USA, 561–578. https://doi.org/10.1145/2660193.2660234

[96] Yongmin Tan, HiepNguyen, Zhiming Shen, Xiaohui Gu, Chitra Venka-

tramani, and Deepak Rajan. 2012. PREPARE: Predictive Performance

Anomaly Prevention for Virtualized Cloud Systems. In 2012 IEEE

32nd International Conference on Distributed Computing Systems.

IEEE, Macau, China, 285–294. https://doi.org/10.1109/ICDCS.2012.65

[97] Joseph Tucek, Shan Lu, Chengdu Huang, Spiros Xanthos, and

Yuanyuan Zhou. 2007. Triage: Diagnosing Production Run Failures

at the User’s Site. In Symposium on Operating Systems Principles

(SOSP) 2007 (SOSP ’07). Association for Computing Machinery, New

York, NY, USA, 131–144. https://doi.org/10.1145/1294261.1294275

[98] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad

Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason

Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen

O’Malley, Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler.

2013. Apache Hadoop YARN: Yet Another Resource Negotiator.

In Proceedings of the 4th Annual Symposium on Cloud Computing.

ACM, Santa Clara California, 1–16. https://doi.org/10.1145/2523616.

2523633

[99] Iris Vessey. 1985. Expertise in Debugging Computer Programs: A

Process Analysis. International Journal ofMan-Machine Studies 23, 5

(Nov. 1985), 459–494. https://doi.org/10.1016/S0020-7373(85)80054-7

[100] Haoyu Wang, Haiying Shen, and Zhuozhao Li. 2018. Ap-

proaches for Resilience against Cascading Failures in Cloud

Datacenters. In 2018 IEEE 38th International Conference on

Distributed Computing Systems (ICDCS). 706–717. https://doi.org/

10.1109/ICDCS.2018.00074

[101] Lingmei Weng, Yigong Hu, Peng Huang, Jason Nieh, and

Junfeng Yang. 2023. Effective Performance Issue Diagno-

sis with Value-Assisted Cost Profiling. In Proceedings of the

Eighteenth European Conference on Computer Systems. ACM,

Rome Italy, 1–17. https://doi.org/10.1145/3552326.3587444

https://doi.org/10.1145/3190508.3190552
https://doi.org/10.1145/1064978.1065014
https://doi.org/10.1145/1064978.1065014
https://www.usenix.org/event/nsdi08/tech/full_papers/liu_xuezheng/liu_xuezheng_html/
https://www.usenix.org/event/nsdi08/tech/full_papers/liu_xuezheng/liu_xuezheng_html/
https://doi.org/10.1145/2815400.2815415
https://www.davidmcginnis.net/post/debugging-from-the-field-the-case-of-the-empty-files
https://www.davidmcginnis.net/post/debugging-from-the-field-the-case-of-the-empty-files
https://yashmehrotra.com/posts/the-case-of-the-missing-packet-an-eks-migration-tale/
https://yashmehrotra.com/posts/the-case-of-the-missing-packet-an-eks-migration-tale/
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan
https://doi.org/10.1109/TPDS.2016.2575829
https://prometheus.io/
https://doi.org/10.1109/ASE56229.2023.00032
https://medium.com/expedia-group-tech/solving-a-native-memory-leak-71fe4b6f9463
https://medium.com/expedia-group-tech/solving-a-native-memory-leak-71fe4b6f9463
https://doi.org/10.1109/ISSREW.2014.36
https://doi.org/10.1109/ISSREW.2014.36
https://doi.org/10.1145/3501297
http://housong.github.io/2016/hbase-reconnect-dn/
http://housong.github.io/2016/hbase-reconnect-dn/
https://doi.org/10.1145/2660193.2660234
https://doi.org/10.1109/ICDCS.2012.65
https://doi.org/10.1145/1294261.1294275
https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1016/S0020-7373(85)80054-7
https://doi.org/10.1109/ICDCS.2018.00074
https://doi.org/10.1109/ICDCS.2018.00074
https://doi.org/10.1145/3552326.3587444

SoCC ’24, November 20–22, 2024, Redmond, WA, USA P. C. Sruthi, Zinan Guo, Deming Chu, Zhengyan Chen, and Yongle Zhang

[102] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I.

Jordan. 2009. Detecting Large-Scale System Problems by Mining

Console Logs. In Proceedings of the ACM SIGOPS 22nd Symposium

on Operating Systems Principles - SOSP ’09. ACM Press, Big Sky,

Montana, USA, 117. https://doi.org/10.1145/1629575.1629587

[103] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues,

Xu Zhao, Yongle Zhang, Pranay U. Jain, and Michael Stumm.

2014. Simple Testing Can Prevent Most Critical Failures: An

Analysis of Production Failures in Distributed Data-Intensive Sys-

tems. In 11th USENIX Symposium onOperating Systems Design and

Implementation (OSDI 14). 249–265.

[104] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou,

and Shankar Pasupathy. 2010. Sherlog: Error Diagnosis by

Connecting Clues from Run-Time Logs. In Proceedings of the

Fifteenth International Conference on Architectural Support for

Programming Languages and Operating Systems. 143–154.

[105] YuQing. 2024. Happyfish100/Fastdfs. https://github.com/

happyfish100/fastdfs

[106] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,

Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and

Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant

Abstraction for in-Memory Cluster Computing. In Presented as Part

of the 9th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 12). 15–28.

[107] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. 2006. Locating

faults through automated predicate switching. In Proceedings of the

28th International Conference on Software Engineering. 272–281.

[108] Xiangyu Zhang, Sriraman Tallam, Neelam Gupta, and Ra-

jiv Gupta. 2007. Towards Locating Execution Omission Er-

rors. In Proceedings of the 28th ACM SIGPLAN Conference on

Programming Language Design and Implementation. 415–424.

[109] Yingying Zhang, Zhengxiong Guan, Huajie Qian, Leili Xu,

Hengbo Liu, Qingsong Wen, Liang Sun, Junwei Jiang, Lunting

Fan, and Min Ke. 2021. CloudRCA: A Root Cause Analy-

sis Framework for Cloud Computing Platforms. In Proceedings

of the 30th ACM International Conference on Information &

Knowledge Management (CIKM ’21). Association for ComputingMa-

chinery, New York, NY, USA, 4373–4382. https://doi.org/10.1145/

3459637.3481903

[110] Yongle Zhang, Serguei Makarov, Xiang Ren, David Lion, and Ding

Yuan. 2017. Pensieve: Non-Intrusive Failure Reproduction for Dis-

tributed Systems Using the Event Chaining Approach. In Proceedings

of the 26th Symposium on Operating Systems Principles. ACM,

Shanghai China, 19–33. https://doi.org/10.1145/3132747.3132768

[111] Yongle Zhang, Kirk Rodrigues, Yu Luo, Michael Stumm, and Ding

Yuan. 2019. The Inflection Point Hypothesis: A Principled Debugging

Approach for Locating the Root Cause of a Failure. In Proceedings of

the 27th ACM Symposium on Operating Systems Principles. ACM,

Huntsville Ontario Canada, 131–146. https://doi.org/10.1145/3341301.

3359650

[112] Yongle Zhang, Junwen Yang, Zhuqi Jin, Utsav Sethi, Kirk Rodrigues,

Shan Lu, and Ding Yuan. 2021. Understanding and Detecting Soft-

ware Upgrade Failures in Distributed Systems. In Proceedings of

the ACM SIGOPS 28th Symposium onOperating Systems Principles.

116–131.

[113] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan,

and Yuanyuan Zhou. 2017. Log20: Fully Automated Op-

timal Placement of Log Printing Statements under Specified

Overhead Threshold. In Proceedings of the 26th Symposium

on Operating Systems Principles. ACM, Shanghai China, 565–581.

https://doi.org/10.1145/3132747.3132778

[114] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and

Dan Ding. 2021. Fault Analysis and Debugging of Microservice

Systems: Industrial Survey, Benchmark System, and Empirical Study.

IEEE Transactions on Software Engineering 47, 2 (Feb. 2021), 243–

260. https://doi.org/10.1109/TSE.2018.2887384

[115] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and

Dan Ding. 2022. Delta Debugging Microservice Systems with Parallel

Optimization. IEEE Transactions on Services Computing 15, 1 (Jan.

2022), 16–29. https://doi.org/10.1109/TSC.2019.2919823

https://doi.org/10.1145/1629575.1629587
https://github.com/happyfish100/fastdfs
https://github.com/happyfish100/fastdfs
https://doi.org/10.1145/3459637.3481903
https://doi.org/10.1145/3459637.3481903
https://doi.org/10.1145/3132747.3132768
https://doi.org/10.1145/3341301.3359650
https://doi.org/10.1145/3341301.3359650
https://doi.org/10.1145/3132747.3132778
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1109/TSC.2019.2919823

	Abstract
	1 Introduction
	2 Methodology
	2.1 Case Collection
	2.2 Case Characteristics
	2.3 Case Analysis Method
	2.4 Threats to Validity

	3 Debugging Activity Overview
	4 Hypothesis Formulation
	4.1 Mechanisms of Hypothesis Formulation
	4.2 Hypothesis Forking
	4.3 Scale of Explanation
	4.4 Anomaly Detection

	5 Experimentation
	5.1 Information Collection
	5.2 Online Interventions
	5.3 Offline Reproduction

	6 Cloud-Related Challenges and Novel Debugging Strategies
	6.1 Partial Failures
	6.2 Concurrency
	6.3 High Availability
	6.4 Cascading Failures
	6.5 Dynamism

	7 Related Work
	7.1 Studies on debugging
	7.2 Studies on cloud failures
	7.3 Debugging tools for cloud failures

	8 Conclusion
	9 Acknowledgements
	References

