
Demystifying the Fight Against Complexity:
A Comprehensive Study of Live Debugging

Activities in Production Cloud Systems
P. C. Sruthi, Zinan Guo, Deming Chu, Zhengyan Chen, Yongle Zhang

Most Internet services live on the cloud

22

. . .

Failures in cloud systems are catastrophic

33

. . .

Debugging in the cloud is costly

4

• Randomly sampled 20 cloud failures from Google Cloud Incidents [1]
• Average failure resolution duration: 3.88 hours

Detection
10.8%

Debugging
62.5%

Recovery
29.2% [2,3]

Cloud Failure Resolution Duration

[1]: https://status.cloud.google.com/summary
[2]: Normalized Average Percentage: Calculated by normalizing the time spent on each activity by the total time for each case before averaging..
[3]: Total percentages (10.8% + 62.3% + 29.2%) >100% due to (1) rounding up the normalized percentage in each case and (2) time attributed to multiple activities because of vague description in reports.

https://status.cloud.google.com/summary

• Most existing debugging studies focus on offline debugging of failed tests.
• 89.3% of cloud failures we studied are debugged completely
 in production.

• Recent studies on cloud debugging are coarse-grained.
• Ghosh et al. [SoCC’22]:

• Categories of root causes ßà mitigation & detection strategies.
• Dogga et al. [ATC’23]:

• Root cause labeling ßà bug report.

Online debugging rate
in cloud debugging

Debugged in production Debugged offline

Understanding of cloud debugging is limited

5

89.3%

10.7%

There is no study on how debugging in production cloud
(live debugging) is performed step by step!

• 93 documented production cloud debugging experiences
• from 14 widely-deployed open-source distributed systems
• with step-by-step hypothesis formulation & verification
• 6 ~ 48 steps (avg. 19) / case

A fine-grained study of cloud live debugging

6

Experimentation

Exploration

Explanation

What is abnormal?

What are the reasons?Is the hypothesis true?

Contributions

• A taxonomy of live debugging activities
• Debugging strategies adopted
• Challenges faced in each activity

• Novel debugging techniques
• for cloud-specific/amplified challenges

Outline: selected research questions

8

Experimentation

Exploration

Explanation

What are the challenges for observability?

When/How do developers
formulate multiple hypotheses?

How to perform experiments
and verify hypotheses?

Proactive experiments which alter execution in production are performed as
often as passive experiments which collect information and make observations!

How to perform experiments & verify hypotheses?

9

Information
Collection

51%

Diagnosis
25%

Verification
24%

Online
Interventions

49%

Intervention %
Config change 41%
Restart 30%
Command 14%
Upgrade 9%
Code change 6%

Information
Collection

51%

Online
Interventions

49%

The Tie btw. Passive & Proactive Experiments

Experiments

• Extra intervention mechanisms (knobs) developer requested:
• Timeout thresholds
• Data sizes
• Queue sizes

• Extra intervention mechanisms (knobs) developer implemented:
• Synchronization

• Remove/add lock
• Change lock type

• Data flow
• Skipping items in collections satisfying some constraint

Developers want more intervention mechanisms

10

Experiments

• What to observe – system-specific or system-agnostic data?

What are the challenges for observability?

11

System-agnostic data System-specific data

CPU Utilization Zookeeper ZNodes
Traffic Volume Spark Executors
Memory HDFS Read Offsets
Latency systemd cookie values
… …

Exploration

• What to observe – system-specific or system-agnostic data?
• How to alert – are default alerting rules (invariants) enough?

What are the challenges for observability?

12

var_1 var_2 var_1 - var_2

57 10 47

63 16 47

9 -38 47

Conventional Invariants Unconventional Invariants

Numerical Delta
Data Consistency
Temporal Distance between events
Process State Relation

Exploration

U
tili

za
tio

n

Time

E.g., threshold violation

• What to observe – system-specific or system-agnostic data?
• How to alert – are default alerting rules (invariants) enough?

What are the challenges for observability?

13

System-agnostic data System-specific data
Default invariants 79.5% 16.5%
Unconventional invariants 3.4% 0.6%

Most anomalies used in debugging can be captured by
system-agnostic data and default alerting rules.

Exploration

• When is system-specific data used?

System-specific data usage spreads across debugging

14

Exploration

0
1
2
3
4
5
6
7
8
9

10

0 20 40 60 80 100

N
um

be
r o

f S
te

ps

Position of System-Specific Information Collection in
Hypotheses (%)

When & how to formulate multiple hypotheses?

15

Model Causal link
Component dependency model Component dependency (static / dynamic)

Fault model Control flow involving error (partial node failure,
omission failure) or recovery

Data flow model Data flow
Concurrency model Interleaving (thread / network message)

Delay contribution model Contributors, threshold, channel endpoints

Quantity contribution model Contributors, threshold

• Avoid random guesses: experts debug by enumerating immediate causes
w.r.t. a model & suspecting the model’s correctness.
• 80.4% of debugging steps formulating multiple hypotheses are performed this way.

Explanation

• Concurrency bugs
• Partial failures
• Cascading failures
• Slow failures
• Dynamism in microservices

Cloud-specific/amplified challenges & debugging tech.

16

• Debugging concurrency bugs:
• Lazy: without concurrency-related anomaly, avoid reasoning about concurrency.
• Scoped: concurrency-related anomaly helps scope the interleaving to be considered.

Challenging debugging tasks are done lazily & scoped

17

Exceptions in different threads

this.context = init()
...
this.context.close();
this.context = null;

[ERROR] [Thread 2]
java.lang.NullPointerException

[ERROR] [Thread 3]
java.lang.NullPointerException

Thread 1

this.context = init()
...
this.context.close();

Thread 2

this.context = init()
...
this.context.close();

Thread 3

var set to null
read null

value
read null

value

Conclusion

18

Thank you!
https://github.com/zlab-purdue/socc-24-debugging-study

• A fine-grained study of live debugging experiences in production cloud.
• Taxonomies of debugging activities, techniques, and challenges.

• Highlighted findings
• Experiments: In-production interventions are performed frequently for diagnosis.
• Observability: The usage of system-specific data spreads across debugging.
• Explanation: Experts debug systematically by following immediate causes in models.

More findings in the paper!

Experimentation

Exploration

Explanation

