Demystifying the Fight Against Complexity:
A Comprehensive Study of Live Debugging
Activities in Production Cloud Systems

P. C. Sruthi, Zinan Guo, Deming Chu, Zhengyan Chen,Yongle Zhang

PURDUE

Most Internet services live on the cloud

amazon
webservices™

Failures in cloud systems are catastrophic

Google cloud is down, affecting
Amazon AWS S3 outage is breaking

1 Apple's iCloud recovers after a
four-hour outage

zdnet.com

September 17, 2018

Microsoft provides preliminary

Cloudflare blames 'bad software'
Vv W\ deployment for today's outage

%

Office 365, Azure users are locked
VMware Joins Cloud Outage Party With Cloud

Foundry Blackout

4

Ken Yeung / The Next Web:

Jan 10, 2014, 10:08 PM — In context

Dropbox says its service is back up and running

outage (Updated) — Update 2 - 12 January: Dropbox now
running” for all users. — Cloud storage service Dropbox is experier

4| Yahoo Mail Takes Big Hit In Cloud Outage

. Another Cloud Outage Strikes Microsoft BPOS,
|report on its September 4 cloud |° %e't‘)‘s‘ Exchande Online J
outage | g
hn_~ . -.||Google Docs Goes Dark In Evening Cloud

Outage

Google Docs, Google's cloud-based suite of
{productivity applications, suffered a brief

LS RLELAS A=)

investigate the incident and are saying they
will provide a more detailed analysis "in the
weeks ahead."

Ty s T To are SouTemmTaTT Ty o

.

{youtage with some Google Docs cloud services
1{going down for roughly an hour. Google Docs
comprises a host of Google's cloud-based
applications, including documents,
presentations, spreadsheets and other tools.

Debugging in the cloud is costly

« Randomly sampled 20 cloud failures from Google Cloud Incidents 1
* Average fallure resolution duration: 3.88 hours

Detection Debugging Recovery

10.8% 62.5% 29.2% 123

Cloud Failure Resolution Duration

[I]: https:/status.cloud.google.com/summary
[2]: Normalized Average Percentage: Calculated by normalizing the time spent on each activity by the total time for each case before averaging..
[3]: Total percentages (10.8% + 62.3% + 29.29%) >100% due to (1) rounding up the normalized percentage in each case and (2) time attributed to multiple activities because of vague description in reports. 4

https://status.cloud.google.com/summary

Understanding of cloud debugging is limited

* Most existing debugging studies focus on offline debugging of failed tests.
* 89.3% of cloud failures we studied are debugged completely opjine debugging rate
in production. in cloud debugging

10.7%

* Recent studies on cloud debugging are coarse-grained.
* Ghosh et al. [SoCC22]:

» Categories of root causes € =2 mitigation & detection strategies.
* Dogga et al. [ATC23]:
* Root cause labeling €= bug report.

There is no study on how debugging in production cloud
(live debugging) is performed step by step!

= Debugged in production = Debugged offline
5

A fine-grained study of cloud live debugging

* 93 documented production cloud debugging experiences 0 mongoDB.
* from |4 widely-deployed open-source distributed systems ’ é
* with step-by-step hypothesis formulation & verification Flink
* 6 ~ 48 steps (avg. 19) / case §€ katka

What is abnormal?

Exploration

Experimentation < >

\ -

Is the hypothesis true?

Contributions

* A taxonomy of live debugging activities
* Debugging strategies adopted
* Challenges faced in each activity

* Novel debugging techniques
* for cloud-specific/amplified challenges

Activity Mechanism
Explanation Model Analysis State Transition
(640) (640) Quantity Contribution
Correlation Locality
Exploration (303) Execution Comparison
(452) Anomaly Event Anomaly
Detection State Anomaly
149
(149) Source Code Anomaly
' . Information Instrumentation
Experimentation Collection (209) :
Probing
(438)

Online Intervention (196)

Offline Reproduction (33)

Outline: selected research questions

What are the challenges for observability?

Exploration

Experimentation Explanation

~

How to perform experiments en/How do developers
and verify hypotheses? formulate multiple hypotheses?

T >
How to perform experiments & verify hypotheses! «=» -~

The Tie btw. Passive & Proactive Experiments

Config change 41%

Diagna Restart 30%

Information Online Command | 4%
Collection | Interventions Upgrade 9%
> 1% 49% i catio Code change 6%

Proactive experiments which alter execution in production are performed as
often as passive experiments which collect information and make observations!
9

Developers want more intervention mechanisms <«

* Extra intervention mechanisms (knobs) developer requested:
* Timeout thresholds
* Data sizes
* Queue sizes

* Extra intervention mechanisms (knobs) developer implemented:

* Synchronization

* Remove/add lock
* Change lock type

* Data flow
* Skipping items in collections satisfying some constraint

What are the challenges for observability?

* What to observe — system-specific or system-agnostic data?

System-agnostic data System-specific data

CPU Utilization Zookeeper ZNodes
Traffic Volume Spark Executors
Memory HDFS Read Offsets

Latency systemd cookie values

11

What are the challenges for observability?

* What to observe — system-specific or system-agnostic data?

* How to alert — are default alerting rules (invariants) enough!?

Conventional Invariants Unconventional Invariants

E.g., threshold violation Numerical Delta

Data Consistency

.LlMN.,
| |

Process State Relation

Utilization

Time
57 10 47

63 |6 47

12

What are the challenges for observability?

* What to observe — system-specific or system-agnostic data?
* How to alert — are default alerting rules (invariants) enough!?

_ System-agnostic data System-specific data

Default invariants 79.5% | 6.5%

Unconventional invariants 3.4% 0.6%

Most anomalies used in debugging can be captured by
system-agnostic data and default alerting rules.

13

System-specific data usage spreads across debugging

* When is system-specific data used!

o

Number of Steps
OO — NN W N~ U1 O NN OO O

Illlil‘lll‘ i I“Il"l
0 20 40 60 80

Position of System-Specific Information Collection in
Hypotheses (%)

100

14

When & how to formulate multiple hypotheses?

* Avoid random guesses: experts debug by enumerating immediate causes
w.rt.a model & suspecting the model's correctness.

* 80.4% of debugging steps formulating multiple hypotheses are performed this way.

Model Causal link

Component dependency model Component dependency (static / dynamic)

Fault model Control flow involving error (partial node failure,
omission failure) or recovery

Data flow model Data flow

Concurrency model Interleaving (thread / network message)

Delay contribution model Contributors, threshold, channel endpoints

Quantity contribution model Contributors, threshold

Cloud-specific/amplified challenges & debugging tech.

* Concurrency bugs
* Partial fallures

* Cascading failures

* Slow failures

* Dynamism in microservices

Challenging debugging tasks are done lazily & scoped

* Debugging concurrency bugs:
* Lazy: without concurrency-related anomaly, avoid reasoning about concurrency.

* Scoped: concurrency-related anomaly helps scope the interleaving to be considered.

Thread |

/ Exceptions in different threads\ // \ / Thread 2 \ / Thread 3 \\

[ERROR] [Thread 2] . ..
this.context = init() this.context = init() this.context = init()

java.lang.NullPointerException
this.context.close() ;

A 4

this.context.close() ;

[ERROR] [Thread 3] this.context.close() ;

] i i this.context = null;

java.lang.NullPointerException read null read null
value

\\/) Kk var set to null/ k va‘I}Je/ k I //

17

Conclusion O Thank you!

https://github.com/zlab-purdue/socc-24-debugging-study
* A fine-grained study of live debugging experiences in production cloud.
* Taxonomies of debugging activities, techniques, and challenges.

» Highlighted findings
* Experiments: In-production interventions are performed frequently for diagnosis.
* Observability: The usage of system-specific data spreads across debugging.
* Explanation: Experts debug systematically by following immediate causes in models.

Exploration

More findings in the paper!

Experimentation

18

